
The mathematics of quantum information theory:
Geometry of quantum states

An introduction to QUANTUM ENTANGLEMENT

Master’s Thesis submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

presented by

Anita Buckley

under the supervision of

Prof. Stefan Wolf

co-supervised by

Charles Alexandre Bédard

June 2021





I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole
or in part, to qualify for any other academic award; and the content of the thesis is the result
of work which has been carried out since the official commencement date of the approved re-
search program.

Anita Buckley
Lugano, 24. June 2021

i





To my family

iii



iv



Abstract

This master’s thesis is in the area of quantum information theory (QIT) and may be considered
as an introduction to quantum entanglement. Entanglement is the key non-classical feature of
quantum mechanics, and a resource for several modern applications including quantum cryp-
tography, quantum computing and quantum communication. The thesis explores the strong
links of QIT with geometry, in particular convex sets, and with functional analysis of Euclidean
and Hilbert spaces and operators on them. The basic definitions and concepts are introduced
in the mathematical framework and then related to the field-specific notations and concepts in
quantum information theory and in quantum mechanics.

At the start the following conventions and concepts and are reviewed: the bra-ket notation,
Hilbert spaces, tensor products, operator or (after specifying bases) matrix algebras and, the
key concept of the thesis, the concept of states (i.e., positive self-adjoint operators of trace one)
or density matrices. There are two fundamental dichotomies on the set of states. The first
dichotomy is between pure states, represented by unit vectors in a complex Hilbert space, and
mixed states that are statistical ensambles of pure states. The notions of multipartite states on
tensor products of Hilbert spaces and the partial trace are introduced. The second dichotomy,
concerning bipartite states, is between the set of separable states (i.e., convex combinations of
product states) and its complement, the entangled states. Often it is convenient to drop the
trace condition and consider the cone of positive semidefinite matrices instead of the convex
set of states.

The Choi isomorphism plays a central role in the thesis by relating (super)operators acting
on matrix or operator algebras with the Choi matrices acting on bipartite Hilbert spaces. In
specified bases the Choi isomorphism is equal to

B (Mn, Mm)
C
−→ B (Cm⊗Cn)

Φ: Mn→ Mm 7→ C(Φ): Cm⊗Cn→ Cm⊗Cn,

||
∑

i, j

Φ(Ei j)⊗ Ei j

where B stands for bounded linear maps and Mn denotes the space of n× n matrices. This in-
duces an isomorphism between the real vector spaces of self-adjointness-preserving linear maps
�

Φ: Msa
n →Msa

m

	

and self-adjoint matrices in Msa
m·n. Consequently, there exist one-to-one corre-

spondences between the cones of positivity preserving / decomposable / completely positive /
PPT-inducing / entanglement breaking maps and the cones of block positive / decomposable /
positive semidefinite / PPT /separable matrices, respectively. The most important of them are
the two self-dual cones related by Choi’s theorem, the cone of completely positive maps and
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the cone of positive semidefinite matrices. In QIT, completely positive maps relate to quantum
channels.

The goal of the thesis is to construct entanglement witnesses, maps that certify entangle-
ment in bipartite states. The transposition is arguably the most powerful but certainly the
most famous entanglement witness. By the Størmer-Woronowicz theorem, every state with
positive partial transpose (PPT) on C2⊗C2 or C2⊗C3 is separable. The PPT criterion or Peres-
Horodecki criterion is a special case of Horodecki’s entanglement witness theorem. Any posi-
tivity preserving map Φ which is not completely positive (transposition being the most known
one) defines an entanglement witness, i.e., 〈C(Φ), · 〉HS certifies entanglement in any state ρ for
which 〈C(Φ), ρ〉HS < 0.

The construction of entanglement witnesses which can detect entangled PPT states (that are
not detectable by the transposition entanglement witness) is phrased as a convex optimization
problem in the form of a semidefinite program (SDP).
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Chapter 1

Introduction

1.1 Preface

Many (scientists) believe that building a quantum computer is the major scientific and techno-
logical challenge of this century. Progress in the evolution of quantum computation and quan-
tum information draws upon the perspectives and insights of computer science, mathematics,
physics and even philosophy. Quantum information theory (QIT) provides the mathematical
framework for this interdisciplinary field. QIT is strongly linked to geometry, in particular con-
vex sets, and to functional analysis of Euclidean and Hilbert spaces and operators on them.

This master’s thesis is in the area of QIT and may be considered as an introduction to quan-
tum entanglement. Entanglement is the key non-classical feature of quantum mechanics, and a
resource for several modern applications including quantum cryptography, quantum computing
and quantum communication.

Outline of the thesis is the following. We start with the basic definitions and concepts that
will be used in the thesis as a reference. We expect the reader to have the basic understand-
ing of (linear) algebra, in particular of finite dimensional real and complex vector spaces and
maps acting between them. We assume the knowledge of classical theorems, e.g., singular
value decomposition or Riesz representation theorem. We introduce mathematical concepts
that are field-specific to quantum information theory, like Hilbert spaces, operator algebras or
(after specifying bases) matrix algebras, and relate them to the analogous concepts that are spe-
cific to quantum mechanics. This way we review the notations and conventions of the bra-ket
notation, Hilbert-Schmidt inner product, tensor products and the key concept of states. Chap-
ter 2 introduces two fundamental dichotomies on states: pure states versus mixed states and
separable states versus entangled states. In Chapter 3 we define the Choi isomorphism that
relates (super)operators acting on matrix or operator algebras with the Choi matrices acting
on bipartite Hilbert spaces. This establishes a one-to-one correspondence between the cone of
completely positive maps and the cone of positive semidefinite matrices. We explain how com-
pletely positive maps relate to quantum channels. In parallel we discuss how these concepts
appear and are relevant in quantum theory; we hope this can help the reader in understand-
ing physicist’s literature on the subject. The aim of the last section is to develop entanglement
witnesses, maps that certify entanglement in bipartite states.

Most of the concepts in the thesis are developed "from scratch" from the definitions and
illustrated by many examples. We include the proofs of all relevant statements (or else indicate
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2 1.2 Notation and basic concepts

the relevant section in our main reference [AS17]). We believe that the figures in the thesis
convey the adage "a picture is worth a thousand words".

Bibliography contains both, modern references that capture the latest developments in quan-
tum information theory, and classical results (often discovered independently in mathematics
and physics) serving as theoretical foundations enabling the rapid progress in the field. They
may be considered as references to everyone that is interested in QIT and its mathematical
background.

1.2 Notation and basic concepts

Throughout the thesis we will use the standard notation of quantum information theory as
introduced in [AHW20], [NC10] or any other textbook. We start by connecting concepts of
(linear) algebra and functional analysis to the Dirac bra-ket notation and states.

A vector space H over the field K (of complex numbers C or real numbers R) is a Hilbert
space if it is equipped with an inner product and is also a complete metric space with respect
to the norm induced by the inner product. An inner product or a scalar product is a mapping
〈·, ·〉: H×H→K with the following properties:

• 〈ψ,ψ〉 ≥ 0 for all ψ ∈H and 〈ψ,ψ〉= 0 implies ψ= 0;

• 〈ψ,χ + ζ〉= 〈ψ,χ〉+ 〈ψ,ζ〉 for all ψ,χ,ζ ∈H;

• 〈ψ,λχ〉= λ〈ψ,χ〉 for all ψ,χ ∈H and all λ ∈K;

• 〈ψ,χ〉= 〈χ,ψ〉 for all ψ,χ ∈H.

Note that, following the above convention, the inner product is conjugate linear in the first
argument and linear in the second argument. Hilbert spaces are by definition complete normed
spaces, in the sense that every Cauchy sequence of vectors in H converges in H, in the norm
acting on vectors as ‖ψ‖=

p

〈ψ,ψ〉.
The above definitions allow us to generalize important concepts of finite dimensional Eu-

clidean spaces to Hilbert spaces, such as length of a vector, orthogonality of two vectors, or-
thonormal basis, identification of a Hilbert space with its topological dual space etc. Combining
the three fundamental structures - linear structure (vectors), metric structure (length of vectors)
and geometric structure (angle between two vectors) - gives Hilbert spaces such an important
role in quantum physics and functional analysis, and in particular in quantum information the-
ory.

The space of bounded operators (i.e., bounded linear maps) from H′ to H will be denoted
by B(H′,H). In particular we write B(H) = B(H,H). A linear map L : H′ → H is bounded if
there exists some c ≥ 0 such that for all ψ ∈H′,

‖Lψ‖H ≤ c‖ψ‖H′ .

The smallest such c is by definition the operator norm of L. A linear operator between normed
spaces is bounded if and only if it is continuous. It holds that any operator between two finite-
dimensional Hilbert spaces is bounded, which is what we will assume throughout the thesis. To
each operator A∈ B(H′,H) we can assign its unique adjoint operator A∗ ∈ B(H,H′) satisfying
the property

〈ψ, Aψ′〉= 〈A∗ψ, ψ′〉 for all ψ ∈H, ψ′ ∈H′ .
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Operator A∈ B(H) is self-adjoint if A∗ = A. Note that the space of self-adjoint operators Bsa(H)
is a real (but not complex) vector subspace in B(H). We call operator S ∈ B(H) positive (or
positive semidefinite) if it satisfies one of the equivalent properties:

• For all ψ ∈H it holds 〈ψ, Sψ〉 ≥ 0;

• S is self-adjoint and 〈ψ, Sψ〉 ≥ 0 for all ψ ∈H;

• S is self-adjoint and its spectrum consists of non-negative real numbers;

• S = A∗A for some operator A∈ B(H).

Another important family of operators are projections. P ∈ B(H) is a projection if P2 = P; this
splits the Hilbert space H = V ⊕ V⊥, where P acts on V as identity and V⊥ is its kernel. The
operator 2P − I is then a reflection with respect to V.

Example 1.1. If we identify vectorψ ∈H with the operator Aψ : α 7→ αψ in B(C,H), its adjoint
operator 〈ψ, · 〉: χ 7→ 〈ψ,χ〉 is in the dual Hilbert space B(H,C) = H∗ of linear functionals.
Indeed, for α ∈ C and χ ∈H it holds

〈χ, Aψα〉 = 〈χ,αψ〉 = α〈χ,ψ〉
‖

〈A∗
ψ
χ,α〉 = 〈〈ψ,χ〉,α〉 = 〈ψ,χ〉α,

where the inner products in the bottom line are in C. The canonical norm and the canonical
inner product on H∗ are obtained by the Riesz representation theorem. In particular it holds
‖〈ψ, · 〉‖H∗ := supχ∈H

|〈ψ,χ〉|
‖χ‖H

= ‖ψ‖H.

The above example shows that H∗ identifies canonically with H = B(C,H). This identifi-
cation is elegantly captured in the Dirac bra-ket notation, where a standard vector ψ ∈ H is
written as |ψ〉 ket vector, and 〈ψ| bra vector is the corresponding vector in H ≡ H∗. Bra-ket
notation generalizes well to standard operations on Hilbert spaces. The inner product 〈ψ,χ〉
corresponds to the action of linear functional 〈ψ| on vector |χ〉, denoted as 〈ψ|χ〉. Moreover,
for A ∈ B(H) and ψ,χ ∈ H we have A |ψ〉 = |Aψ〉 and 〈ψ|A∗ = 〈ψA|, and consequently
〈ψ, Aχ〉 = 〈A∗ψ,χ〉 is written as 〈ψ|A|χ〉. We refer to the standard basis e1, e2, . . . , ed of Cd as
the computational basis |0〉 , |1〉 , . . . , |d − 1〉.

Any n-dimensional complex Hilbert space is isomorphic to Cn. This allows us to identify the
space of complex m×n matrices Mm,n with the space of operators B(Cn,Cm) and, more generally
after specifying bases, with operators between any complex Hilbert spaces of appropriate di-
mensions. Similarly we write Mn = B(Cn) and Msa

n = Bsa(Cn); note that Mn is an n2-dimensional

complex vector space and Msa
n is a real vector space of dimension n+2 n(n−1)

2 = n2. These iden-
tifications ensure that the conjugate transposition of a matrix is consistent with the notion of
the adjoint operator, a composition of operators corresponds to matrix multiplication and more-
over, the trace duality induces an inner product on Mm,n defined as the Hilbert–Schmidt inner
product

〈M , N〉HS = Tr M∗N for M , N ∈Mm,n . (1.1)

The corresponding norm ‖M‖HS =
p

Tr M∗M is called the Hilbert-Schmidt norm, in mathematics
it is usually called the Frobenius norm. We remark that the definition is independent of the
choice of the orthonormal basis, therefore the Hilbert–Schmidt inner product and norm on B(H)
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are well defined and make B(H) into a Hilbert space. Similar interplay between operators and
their matrix representations will be relevant in all the chapters. Therefore it is important to
introduce the intrinsic definitions and properties (i.e., independent of the basis) in a canonical
way.

The central concept of this thesis is that of quantum states. On a Hilbert space H, a quantum
state is a positive self-adjoint operator of trace one. Following the above identifications on finite-
dimensional spaces, alternative names for states are density matrices or density operators, thus
the set of states on H is denoted by D(H).

Remark 1.2. This definition of states is consistent with the definition of states in functional
analysis, where a state on a C∗-algebra is a positive linear functional that maps unit element to
1. Indeed, B(Cn) = Mn is an example of a C∗-algebra (i.e., a Banach algebra over C together
with an involution ∗ satisfying (αM + βN)∗ = ᾱM∗ + β̄N ∗, (MN)∗ = N ∗M∗ and ‖M M∗‖ =
‖M‖2, the so-called adjoint properties). A state on B(Cn) is by definition a linear functional
Φ: B(Cn) → C such that Φ(I) = 1 and Φ(X X ∗) ≥ 0 for all X ∈ B(Cn). Since Φ ∈ B(Cn)∗, the
Reisz representation theorem yields a matrix MΦ ∈ B(Cn) =Mn for which it holds

Φ= 〈MΦ, · 〉HS : B(H) → C
N 7→ 〈MΦ, N〉HS = Tr M∗Φ N .

This implies that MΦ is a density matrix. Indeed, its trace is Tr MΦ = Φ(I) = 1 and, by consid-
ering Φ(X X ∗) = Tr M∗ΦX X ∗ = Tr X ∗M∗ΦX ≥ 0 for suitable matrices X , we can prove that MΦ is
positive semi-definite.

In quantum mechanics the self-adjoint elements in Bsa(H) are called observables, the mea-
surable quantities of the physical system. As explained in Remark 1.2, a state Φ of the system
is a positive functional on B(H) or equivalently, its dual positive operator MΦ ∈ B(H) of trace
one. When measuring a system in state Φ with observable L ∈ Bsa(H), the possible results are
the real eigenvalues of L. In Section 2.1 we will compute the probabilities of measuring a par-
ticular eigenvalue. Moreover, if the system is in state Φ, then the expected value of observable
L is Φ(L) = 〈MΦ, L〉= Tr M∗Φ L.

Tensors describe states of quantum mechanical systems. If a system has k particles, its state
is an operator on a multipartite Hilbert space

H =
k
⊗

j=1

H j =H1⊗H2⊗· · · ⊗Hk,

where H j is a Hilbert space associated to the j-th particle. We will mostly work with bipartite
Hilbert spaces for k = 2. The tensor product H1⊗H2 can be defined as the vector space of
linear maps H∗1→H2, or equivalently, as the space of bilinear functions H∗1×H

∗
2→K. We can

turn H1⊗H2 into a Hilbert space by defining the inner product of product vectors by

〈ψ1 ⊗ψ2,χ1 ⊗χ2〉= 〈ψ1,χ1〉 〈ψ2,χ2〉 for ψ1,χ1 ∈H1, ψ2,χ2 ∈H2,

and extending by linearity. This is in fact the Hilbert-Schmidt inner product of operators which
can be verified by using the bra-ket notation: ψ1 ⊗ψ2 ∈H1⊗H2 is by definition the operator

|ψ1〉 ⊗ |ψ2〉 : H∗1 → H2

〈ξ1| 7→ 〈ξ1|ψ1〉 |ψ2〉
with adjoint

〈ψ1| ⊗ 〈ψ2| : H2 → H∗1
|ξ2〉 7→ 〈ψ2|ξ2〉 〈ψ1|

,



5 1.2 Notation and basic concepts

where we canonically identified (H1⊗H2)∗ with H∗1⊗H
∗
2, therefore

〈ψ1 ⊗ψ2,χ1 ⊗χ2〉HS = Tr (〈ψ1| ⊗ 〈ψ2| |χ1〉 ⊗ |χ2〉) = 〈ψ1,χ1〉 〈ψ2,χ2〉.

As an immediate consequence we get that, if {ϕi} and {ξ j} are orthonormal bases of H1 and
H2 respectively, then {ϕi ⊗ξ j} is an orthonormal basis for H1⊗H2. We will mostly work with
concrete bipartite spaces Cm⊗Cn and use the standard basis {ei ⊗ e j} for i = 1, . . . , m and
j = 1, . . . , n. In the computational basis it is convenient to drop the tensor product sign, for
example the four vectors |00〉 , |01〉 , |10〉 , |11〉 form the computational basis of C2⊗C2.

It is also convenient to identify the space of operators B(Cm⊗Cn) with mn×mn matrices
Mmn. More precisely, to each operator A∈ B(Cm⊗Cn) we assign the m×m block matrix whose
elements are n× n matrices defined as

M =
�

Mi j

�m

i, j=1 , where each Mi j =
� 


ei ⊗ ek

�

�A
�

�e j ⊗ el

��n

k,l=1 . (1.2)

By applying canonical identifications, we can find an isomorphisms between

B (H1⊗H2) ↔ B(H1)⊗ B(H2),

where the tensor products are over the same field, either R or C. We will frequently use the
following equalities for A1, A′1 ∈ B(H1) and A2, A′2 ∈ B(H2):

• (A1 ⊗ A2) (A′1 ⊗ A′2) = A1A′1 ⊗ A2A′2,

• (A1 ⊗ A2) (A−1
1 ⊗ A−1

2 ) = IH1
⊗ IH2

= IH1⊗H2
,

• (A1 ⊗ A2) = (A1 ⊗ IH2
) (IH1

⊗ A2) = (IH1
⊗ A2) (A1 ⊗ IH2

),

• (A1 ⊗ A2)∗ = A∗1 ⊗ A∗2,

• Tr(A1 ⊗ A2) = Tr A1 · Tr A2.

On the other hand, canonical identification between self-adjoint operators is possible only for
complex Hilbert spaces,

Bsa (H1⊗H2) ↔ Bsa(H1)⊗ Bsa(H2), (1.3)

where the left-hand side tensor product is over C, whereas the right-hand side tensor product
is over R. This subtlety is demonstrated in the following exercise.

Example 1.3. Consider complex Hilbert spaces H1 and H2, and vectors ψ1,χ1 ∈ H1 and
ψ2,χ2 ∈H2. The operator

|ψ1 ⊗ψ2 +χ1 ⊗χ2〉〈ψ1 ⊗ψ2 +χ1 ⊗χ2| ∈ Bsa (H1⊗H2)

can be explicitly written in Bsa(H1)⊗ Bsa(H2) as

|ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|+ |χ1〉〈χ1| ⊗ |χ2〉〈χ2|

+
1
4

4
∑

k=1

(−1)k
�

�ψ1 + ikχ1

�


ψ1 + ikχ1

�

�⊗
�

�ψ2 + ikχ2

�


ψ2 + ikχ2

�

� .



6 1.2 Notation and basic concepts

We now introduce the Schmidt decomposition of vectors in bipartite Hilbert spaces, which
is nothing but the singular value decomposition (SVD) for matrices translated into the language
of tensors. By "translation" we mean the canonical identification

H∗1⊗H2 → B(H1,H2)
u⊗ v 7→ |v〉〈u| .

The use of complex conjugacy in the canonical identification H∗ ↔ H can be avoided if we
work in specified bases. For fixed bases {ϕi} of H1 and {ϑ j} of H2 we can define a C-linear
map as follows:

vec: B (H1,H2) −→ H2⊗H1 (1.4)
�

�ϑ j

�


ϕi

�

� 7→ ϑ j ⊗ϕi

and extend by C-linearity. This is the same as the linear map vec |ψ2〉〈ψ1| = ψ2 ⊗ψ1 where
ψ1 ∈ H1, ψ2 ∈ H2 and conjugacy is taken with respect to the basis {ϕi} in H1. In particular
we have

Cm⊗Cn↔Mm,n . (1.5)

We recall SVD: any matrix A∈Mm,n can be decomposed as A= UΣV ∗ for some unitary matrices
U ∈ U(m), V ∈ U(n) and nonnegative diagonal matrix Σ ∈ Mm,n (i.e., Σi j = 0 whenever
i 6= j and the singular values are Σii ≥ 0). Up to permutation, the nonzero singular values
of A coincide with the nonzero eigenvalues of (AA∗)1/2 or (A∗A)1/2. In fact, the singular value
decomposition for A is constructed from the spectral theorem for the positive semi-definite AA∗

or A∗A. An equivalent presentation of A= UΣV ∗ (in a unique way) is

A=
min(m,n)
∑

j=1

σ j

�

�u j

�


v j

�

� ,

for non-increasing singular values σ j ≥ 0 and orthonormal vectors u j ∈ Cm and v j ∈ Cn. When
applied to a bipartite Hilbert space, this translates into the Schmidt decomposition.

Corollary 1.4. Let ψ be a vector in a bipartite Hilbert space H1⊗H2. Then there exist scalars
σ j ≥ 0 and orthonormal vectors ϕ j ∈H1 and ϑ j ∈H2 for j = 1, . . . , min(dimH1, dimH2), such
that

ψ=
∑

j

σ j ϕ j ⊗ ϑ j .

In (1.1) we explained that B(H) and Mm,n, equipped with the Hilbert-Schmidt inner product,
are Hilbert spaces. Therefore, it is natural to consider linear maps between the large Hilbert
spaces of operators. In quantum information theory, operators between spaces of operators
have a distinct name, superoperators. Accordingly, we denote by IH the identity operator on a
Hilbert space H and by IdB(H) the identity superoperator on B(H). A superoperator is positive
or positivity preserving if it maps positive operators into positive operators.



Chapter 2

The geometry of quantum states

This chapter formalizes the mathematical approach to quantum information theory. In parallel
we discuss the physical perspective of the same basic concepts, that serves as a motivation for
studying the geometry of the set of quantum states and the dichotomy between separability and
entanglement.

2.1 Pure and mixed states

The set of quantum states on a complex Hilbert space H (see the definition and Remark 1.2 on
pg. 4) is the set

D(H) := {ρ ∈ Bsa(H): ρ is positive and Trρ = 1} ,

which is clearly a convex set. A state ρ ∈ D(H) is pure if it has rank 1. In this case there exists
a unit vector |ψ〉 ∈H, called a state vector, such that

ρ = |ψ〉〈ψ| .

Note that |ψ〉 is uniquely determined up to a number λ ∈ C with |λ| = 1. This identifies the
set of pure states with the projective space P(H). It is a common abuse of notation to say "pure
state |ψ〉" instead of state vector |ψ〉 representing the pure state |ψ〉〈ψ|. As an operator, |ψ〉〈ψ|
is the orthogonal projection onto the one-dimensional subspace of H spanned by |ψ〉.

It can be shown that pure states are exactly the extreme points of the convex set D(H). A
point in a convex set is extreme if it cannot be written as convex combination of other points in
the set. Krein-Milman theorem [AS17, Thm 1.3] asserts that any convex set is the convex hull
of its extreme points, i.e., the extreme points determine the entire set.

Definition 2.1. We call a state in D(H) that is not pure a mixed state, thus every mixed state is
a convex combination of pure states.

Remark 2.2. This definition is equivalent to the definition of mixed states in quantum mechan-
ics, where a mixed state can be viewed as a quantum system that is a statistical ensamble of
pure states. This means that every mixed state is of the form

∑

j

p j

�

�ψ j

�


ψ j

�

�

for some state vectors
�

�ψ j

�

and some classical probabilities p j that sum to 1.

7
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In Chapter 3 we will extensively use a consequence of this fact, namely that the extremum
of any convex or concave function over the set D(H) is achieved on a pure state. Moreover, the
spectral theorem implies the following proposition, which significantly reduces the dimension
of the problem.

Proposition 2.3. Any state in D(H) is a convex combination of at most dimH pure states of the
form

�

�ψ j

�


ψ j

�

�, where ψ j ∈H are pairwise orthogonal unit vectors.

Example 2.4. In quantum computing, a qubit (short for quantum bit) is the basic unit of quan-
tum information. Qubits describe the simplest, two-state quantum mechanical systems (e.g.,
the spin of the electron or the polarization of a single photon). Unlike the classic binary bit
corresponding to one of the two states of a classical system, the quantum bit is allowed to be in
a coherent superposition of both states simultaneously. This means, the state vectors in H = C2

are of the form
|ψ〉= α |0〉+ β |1〉

for some α,β ∈ C constrained by the equation |α|2 + |β |2 = 1.

2.1.1 Observables

Physicists observe a mechanical system by designing an experiment and making measurements.
An experiment thus involves a system together with an apparatus that makes measurements
and records the results of the measurements. The mathematical abstraction of apparatus are
observables - their eigenvalues represent possible outcomes of measurements. Recall our defi-
nition of observables, elements in Bsa(H) corresponding to measurable entities in the quantum
mechanical system, and their expectations on pg. 4. We now use the spectral theorem to relate
the definitions to the actual measurement results.

Suppose observable L ∈ Bsa(H) has eigenvalues λ j and eigenvectors ϕ j , forming an or-
thonormal basis of H. The corresponding spectral decomposition of L is

L =
∑

j

λ j

�

�ϕ j

�


ϕ j

�

� .

When measuring a system in a pure state ψ ∈H with observable L, we get the outcome value
λ j with probability

�

�




ϕ j

�

�ψ
��

�

2
. This can be seen by expanding ψ in the basis of eigenvectors of

observable L,
|ψ〉=

∑

j




ϕ j

�

�ψ
� �

�ϕ j

�

.

Note that, since 〈ψ|ψ〉 = 1, the probabilities add up to 1. We will interchangeably use the
phrases "measure with observable L" and "measure in the basis {ϕ j}".

Moreover, the expected value of the measurement is by definition the scalar product of λ j

with the corresponding probabilities,
∑

j

λ j

�

�




ϕ j

�

�ψ
��

�

2
=
∑

j




ψ
�

�ϕ j

�

λ j




ϕ j

�

�ψ
�

= 〈ψ|L|ψ〉= Tr (|ψ〉〈ψ| L) = 〈|ψ〉〈ψ| , L〉HS.

This calculation extends to the expected value of the measurement of mixed states. Indeed,
since any state ρ ∈ D(H) is a convex combination of pure states, we can by linearity compute
the expected value of the measurement of a system in state ρ as

〈ρ, L〉HS = TrρL.
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This expected value is called the expectation of observable L and denoted by 〈L〉 or 〈L〉ρ (or
〈L〉ψ = 〈ψ|L|ψ〉 for a pure state ψ).

Remark 2.5 (Collapse of the wave function). The collapse of the wave function is commonly
perceived as an important postulate in the Copenhagen interpretation of quantum mechanics.
It states that during an experiment the state vector of a system jumps unpredictably to an eigen-
state of the observable that was measured. In our case, the system just before the measurement
is in state |ψ〉, and after the measurement with observable L, the system will be in state

�

�ϕ j

�

with
probability |




ϕ j

�

�ψ
�

|2. Because of this, experimental physics is about "measuring" observables
and not the state vectors. An experiment to measure L will have an unpredictable outcome,
but after the measurement is made, the system will be left in an eigenstate of L corresponding
to the eigenvalue that is the outcome of the measurement. On the other hand, the collapse is
considered a redundant postulate in some other interpretations of quantum mechanics, most
notably in Everett’s many-worlds interpretation.

We say that pure states are distinguishable if and only if their state vectors are orthogonal.
The above link between observables and measurements in the corresponding orthonormal bases
implies that states are distinguishable if there is an experiment that can tell them apart.

Example 2.6. The standard choices of the measurement bases for H = C2 are

|z+〉= |0〉 and |z−〉= |1〉 ,

|x+〉=
1
p

2
|0〉+

1
p

2
|1〉 and |x−〉=

1
p

2
|0〉 −

1
p

2
|1〉 ,

|y+〉=
1
p

2
|0〉+

i
p

2
|1〉 and |y−〉=

1
p

2
|0〉 −

i
p

2
|1〉 ,

which are referred to as up-down, right-left, in-out bases in [SF15]. They correspond to the
eigenvectors of the famous observables (named after their discoverer), the Pauli matrices

σz =

�

1 0
0 −1

�

, σx =

�

0 1
1 0

�

, σy =

�

0 −i
i 0

�

. (2.1)

Remark 2.7 (POVM). Observables are not the most general way to describe a measurement in
quantum theory. The most general quantum measurement consists of a set of operators {M j}
that are complete in the following way,

∑

j

M∗j M j = I .

The set of positive operators {M∗j M j} is called a positive operator-valued measure (POVM).
It is easy to see why POVMs are a generalization of observables: given an observable L, its

spectral decomposition yields an orthonormal basis {ϕ j} with the property
∑

j

�

�ϕ j

�


ϕ j

�

�= I ,

therefore
��

�ϕ j

�


ϕ j

�

�

	

is a POVM. In general, each M∗j M j can be decomposed as a sum of pure
states (with orthogonal state vectors), and each state vector corresponds to a possible mea-
surement outcome. In Example 2.26 we will show that the famous Bell states (2.13) are a
POVM.

For more on how to specify measurements with POVMs and on POVM formalism see [Wil17].
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2.1.2 Unitary

Unitary operators play a crucial role in quantum computing and quantum mechanics, repre-
senting all kinds of transformations on the set of states. In fact, unitaries are the only affine
maps preserving D(Cn).

Theorem 2.8 (Kadison’s theorem, [AS17]:Thm.2.4). Any affine map preserving D(Cn) is of the
form ρ 7→ UρU∗ or ρ 7→ UρT U∗ for some unitary U ∈ U(n). These maps are isometries with
respect to the distance induced by the Hilbert-Schmidt norm on Mn.

In quantum computing, unitary operators are called quantum gates, and they are usually
written in the computational basis. Quantum gates act on states representing systems comprised
of finite numbers of qubits, i.e., for H = C2⊗· · · ⊗C2

︸ ︷︷ ︸

k-times

the action of U ∈ U(2k) is

D(H) −→ D(H)
ρ 7→ UρU∗

or
H −→ H

|ψ〉 7→ U |ψ〉 ,

by the standard abuse of notation for pure states ρ = |ψ〉〈ψ|. A unitary operator on a single
qubit is a unary. Some of the most famous unaries are:

Pauli-X

�

0 1
1 0

�

,

Pauli-Y Y

�

0 −i
i 0

�

,

Pauli-Z Z

�

1 0
0 −1

�

,

Hadamard H 1p
2

�

1 1
1 −1

�

,

Phase S

�

1 0
0 i

�

,

π/8 T

�

1 0
0 eiπ/4

�

,

and the most famous two-qubit unitary (i.e., acting on C2⊗C2) is the Controlled Not gate

CNOT







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






.

In fact, any k-qubit quantum gate U (i.e., acting on state vectors in C2k
) can be implemented

by using only the CNOT gate and unaries. Moreover, as explained in [NC10, Section 4.5], the
Hadamard, phase, CNOT and π/8 gates are universal for the quantum computation in the sense
that it is possible to simulate the circuit U to good accuracy using only this discrete set of gates.
The Solovay-Kitaev theorem [NC10, Appendix 3] ensures that the simulation can be performed
efficiently.

In the next paragraph we will briefly describe time evolution, arguably the most famous ex-
ample of unitaries in quantum mechanics, and connect it to self-adjoint operators representing
observables. For a practical introduction and more details see [SF15].
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Example 2.9 (Time evolution). Let us consider a closed system that at time t is in the pure
quantum state |ψ(t)〉. We assume that |ψ(t)〉 is given by some operation U(t) acting on the
state vector |ψ(0)〉. Conventional quantum mechanics requires U(t) to be linear, and moreover,
that it conserves distinctions - recall that states |ψ(0)〉 and |χ(0)〉 are distinguishable if and
only if they are orthogonal. In other words, conservation of distinctions implies that when
〈ψ(0)|χ(0)〉= 0, then 〈ψ(t)|χ(t)〉= 0 for all t. If we take |ψ(0)〉 , |χ(0)〉 to be vectors | j〉 , |k〉
in the computational basis, we get

〈ψ(t)|χ(t)〉= 〈 j|U∗(t)U(t)|k〉= δ jk,

which proves that time evolution U(t) is unitary. Another natural requirement is that the state
vector changes smoothly, which means that U(t) is continious, therefore U(0) = I and for very
small ε, U(ε) differs from the identity by something of order ε,

U(ε) = I −
i
}h
εH. (2.2)

The factor − i
}h in front of H seems arbitrary at this stage, but the Planck’s constant }h gives the

equation a meaning as H will become the quantum Hamiltonian representing the energy of a
system. By expanding

U∗(ε)U(ε) = I
�

I +
i
}h
εH∗

��

I −
i
}h
εH
�

= I

in ε, we find H∗ = H. This says that H is a self-adjoint operator, or a Hermitian operator in the
physics literature, thus H is an observable with a complete set of orthonormal eigenvectors and
eigenvalues. We can easily turn (2.2) into a differential equation:

|ψ(ε)〉 = U(ε) |ψ(0)〉 = |ψ(0)〉 −
i
}h
εH |ψ(0)〉

|ψ(ε)〉 − |ψ(0)〉
ε

= −
i
}h

H |ψ(0)〉

}h
∂ |ψ〉
∂ t

= −iH |ψ〉 , (2.3)

the famous time-dependent Schrödinger equation, where the Hamiltonian operator H represents
energy. More precisely, the observable values of energy are the eigenvalues of H, which we
denote by E j , and we denote the corresponding eigenvectors by

�

�ϑ j

�

. By definition, this yields
the time-independent Schrödinger equation

H
�

�ϑ j

�

= E j

�

�ϑ j

�

. (2.4)

We can now solve the time-dependent Schrödinger equation (2.3) by expanding the state vector
|ψ(t)〉 in the orthonormal basis of eigenvectors of H, and then solving the differential equation
for an exponential function of time on each component. The solution is

|ψ(t)〉=
∑

j

�

�ϑ j

� 


ϑ j

�

�ψ(0)
�

e−
i
}h E j t ,
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or in the matrix form, again represented in the eigenbasis of H,

|ψ(t)〉= U(t) |ψ(0)〉=









. . .

e−
i
}h E j t

. . .









|ψ(0)〉 .

We can now predict the probabilities for each possible outcome of an experiment as a func-
tion of time. Suppose observable L has eigenvaluesλ j and eigenvectors

�

�ϕ j

�

. Then the probabil-

ity for the outcome λ j , when measuring the system in the state |ψ(t)〉 at time t, is
�

�




ϕ j

�

�ψ(t)
��

�

2
.

Remark 2.10. A naive observation is that every state is a self-adjoint operator and thus it is
also an observable. Let us consider a simple example, the pure state |0〉〈0|, and view it as an
observable H = |0〉〈0| ∈Msa

n . The orthonormal basis of eigenvectors of H is the computational
basis {|0〉 , |1〉 , . . . , |n− 1〉} with the first eigenvalue 1 and all the other eigenvalues 0. Then the
corresponding time evolution

U(t) =











e−
i
}h t

1
...

1











acting on the state vector |ψ(0)〉=
∑n−1

j=0 α j | j〉 results in

|ψ(t)〉= α0e−
i
}h t |0〉+

n−1
∑

j=1

α j | j〉 .

In particular, the system at time t is in state |ψ(t)〉〈ψ(t)| and the expected value of observable
H = |0〉〈0| is

Tr (|ψ(t)〉〈ψ(t)| |0〉〈0|) = α0α0,

which is independent of time t.

2.1.3 States vs. positive semi-definite matrices

The most central element in the set of states D(H) is the state 1
dimH IH, called maximally mixed

state and denoted by ρ∗. In the computational basis ρ∗ ∈ D(Cn) equals

ρ∗ =
1
n
(|0〉〈0|+ · · ·+ |n− 1〉〈n− 1|) . (2.5)

We will show that for n > 2 the set D(Cn) is not centrally symmetric, however, the maximally
mixed state ρ∗ plays the role of a center in the following way.

Proposition 2.11. Maximally mixed state ρ∗ is the only state in D(Cn) that is fixed by all the
isometries of D(Cn) (with respect to the Hilbert-Schmidt distance).

Proof. From the singular value decomposition (see SVD on pg. 6) it follows that a complex
matrix M ∈ Mn can be written as a linear combination of two unitary matrices. Indeed, by
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SVD we may assume that M is diagonal and with ‖M‖ ≤ 1, thus M = diag(σ1, . . . ,σn) and
0≤ σ j ≤ 1. Since

σ j =
1
2
(z j + z j), where z j = σ j + i

Ç

1−σ2
j ,

it follows from z jz j = 1 that M is the average of two unitary matrices.
Next, let ρ ∈ D(Cn) be a state that is fixed by all unitary matrices, UρU∗ = ρ (which are

isometries by Theorem 2.8). We proved that unitary matrices span the entire Mn as a complex
vector space, so ρ must commute with any matrix. Therefore ρ = αI for some α ∈ C, and from
Trρ = 1 we get α= 1

n .

In the definition of the set of states

D(Cn) :=
�

ρ ∈Msa
n : ρ is positive semi-definite and Trρ = 1

	

,

it is often convenient to drop the trace restriction in D(Cn) and instead consider the entire cone
of positive semi-definite matrices in Msa

n . A nontrivial closed convex set C ⊂ Rn is called a cone
if x ∈ C and t ≥ 0 implies t x ∈ C. The dual cone is defined as

C∗ :=
�

x ∈ Rn : 〈x,y〉 ≥ 0 for all y ∈ C
	

. (2.6)

For a given point e ∈ C∗\C⊥, the intersection of the affine hyperplane

He =
�

x ∈ Rn : 〈x,e〉= |e |2
	

(2.7)

with C is a nonempty closed convex set Cb := C∩ He, called a base. Note that e is the point in
He that is the closest to the origin.

Example 2.12. We will extensively avail the following examples of cones:

• The Positive orthant Rn
+, i.e., the elements of Rn with positive coordinates.

• The Lorentz cone Ln =
¦

(x0, x1, . . . , xn−1): x0 ≥ 0,
∑n−1

k=1 x2
k ≤ x2

0

©

⊂ Rn.

• PSD(Cn) cone of complex positive semi-definite matrices in the real vector space Msa
n .

It is easy to check that the three cones are self-dual, i.e., they satisfy C∗ = C.

Using the cone notation, we can say that D(Cn) is the base of the positive semi-definite cone
PSD(Cn) defined in the hyperplane of trace one matrices; in short,

PSDb = D.

Note that the hyperplane of trace one matrices is Hρ∗ , with ρ∗ =
1
n I being the maximally mixed

state. Indeed,

Hρ∗ =
§

X ∈Msa
n : 〈X ,ρ∗〉HS =

1
n

Tr X = ‖ρ∗‖2
HS =

1
n

ª

.

On page 3 we computed that the real dimension of the cone PSD(Cn) ⊂Msa
n is n2, and the set

of density matrices D(Cn) is n2 − 1 dimensional. Their geometry is shown on Figure 2.1.

Next we will describe the geometry of cones PSD(Cn) and their bases D(Cn) for n≥ 2.

Lemma 2.13. Matrix ρ ∈Msa
2 with trace 1 is a state if and only if ‖ρ −ρ∗‖HS ≤

1p
2
.
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PSD cone

• ρ∗∈ D(Cn)

trace one hyperplane

real vector space Msa
n

Figure 2.1. Cone PSD(Cn) and its base D(Cn).

Proof. The eigenvalues of ρ ∈Msa
2 with Trρ = 1 are of the form 1

2−λ and 1
2+λ for some λ ∈ R.

This implies that ρ is a state if and only if − 1
2 ≤ λ≤

1
2 , from which we conclude

‖ρ −ρ∗‖HS =
p

2|λ| ≤
1
p

2
.

We have proved that, in the affine space of trace one operators in Msa
2 , the set of states D(C2)

is an Euclidean ball with center ρ∗ and radius 1p
2
. This ball is the Bloch ball and its boundary,

consisting of pure states, is called the Bloch sphere. Classically, the Bloch ball is defined using
the trace zero Pauli matrices (2.1)

σx =

�

0 1
1 0

�

, σy =

�

0 −i
i 0

�

, σz =

�

1 0
0 −1

�

in the following way. Since

1
p

2
I ,

1
p

2
σx ,

1
p

2
σy ,

1
p

2
σz (2.8)

form an orthonormal basis in Msa
2 (with respect to the Hilbert-Schmidt inner product), any

ρ ∈Msa
2 with Trρ = 1 can be written as

ρ =
1
p

2
·

1
p

2
I + ax ·

1
p

2
σx + ay ·

1
p

2
σy + az ·

1
p

2
σz .

By Lemma 2.13, ρ is a state if and only if

‖ρ −ρ∗‖2
HS = a2

x + a2
y + a2

z ≤
1
2

.
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On the other hand, when we consider the PSD(C2) cone, it is convenient to use the spinor
map defined as

R4 3 (t, x , y, z) 7→
�

t + z x − i y
x + i y t − z

�

= X ∈Msa
2 .

The spinor map yields an explicit isomorphism between the Lorentz cone

L4 =
�

(t, x , y, z) ∈ R4 : t ≥ 0 and x2 + y2 + z2 ≤ t2
	

and positive semi-definite matrices in Msa
2 . Indeed, X = t I + xσx + yσy + zσz is positive semi-

definite if and only if

Tr X = 2t ≥ 0 and det X = t2 − x2 − y2 − z2 ≥ 0.

For n ≥ 3 the set of states D(Cn) is no longer a ball. However, we can compute the radius
of its inscribed and circumscribed Hilbert-Schmidt balls.

Lemma 2.14. It holds that

B

�

ρ∗,
1

p

n(n− 1)

�

⊂ D(Cn) ⊂ B

�

ρ∗,

√

√n− 1
n

�

,

where B(ρ∗, r) denotes the ball with center ρ∗ and radius r in the Hilbert-Schmidt norm inside the
affine hyperplane

�

ρ ∈Msa
n : Tr(ρ) = 1

	

.

Proof. Consider ρ ∈Msa
n with Trρ = 1. The n eigenvalues of ρ can be written as

1
n
+λ1,

1
n
+λ2, . . . ,

1
n
+λn−1,

1
n
−

n−1
∑

j=1

λ j ,

which means that ρ is positive semi-definite if and only if λ j ≥ −
1
n and

∑n−1
j=1 λ j ≤

1
n . From

‖ρ −ρ∗‖2
HS =

∑n−1
j=1 λ

2
j +
�

∑n−1
j=1 λ j

�2
we conclude that:

• if ρ is positive semi-definite, it must hold ‖ρ −ρ∗‖HS ≤
q

n−1
n ,

• if the inequality ‖ρ −ρ∗‖HS ≤
1p

n(n−1)
holds, ρ must be positive semi-definite.

In the sequel we visualize how D(Cn) differs from a ball for n= 3. In the proof of Lemma 2.14
we wrote the necessary and sufficient conditions for ρ ∈Msa

3 to be in D(C3). Concretely, ρ ∈Msa
3

with eigenvalues 1
3 +λ1, 1

3 +λ2, 1
3 −λ1 −λ2 is a state if and only if

(λ1,λ2) ∈ simplex
§

λ1,λ2 ≥ −
1
3

, λ1 +λ2 ≤
1
3

ª

,

which has inscribed circle with radius 1p
6

and circumscribed circle with radius
q

2
3 . Figure 2.2

shows the points (λ1,λ2, z) ∈ R3, where (λ1,λ2) are inside the simplex parametrizing D(C3),
and

z(λ1,λ2) = ‖ρ −ρ∗‖2
HS = λ

2
1 +λ

2
2 + (λ1 +λ2)

2

is restricted to the interval 1
6 ≤ z ≤ 2

3 .

The 3-dimensional analogue of Pauli matrices for qutrits are the 8 Gell-Mann matrices:
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Figure 2.2. Surface z = ‖ρ−ρ∗‖HS defined on the simplex that is parametrizing ρ ∈D(C3).

• symmetric: σs12
=





0 1 0
1 0 0
0 0 0



 , σs13
=





0 0 1
0 0 0
1 0 0



 , σs23
=





0 0 0
0 0 1
0 1 0



 ,

• antisymmetric: σa12
=





0 −i 0
i 0 0
0 0 0



 , σa13
=





0 0 −i
0 0 0
i 0 0



 , σa23
=





0 0 0
0 0 −i
0 i 0



 ,

• and diagonal: σd1
=





1 0 0
0 −1 0
0 0 0



 , σd2
= 1p

3





1 0 0
0 1 0
0 0 −2



.

It is straightforward to check that

1
p

3
I ,

1
p

2
σs12

,
1
p

2
σs13

,
1
p

2
σs23

,
1
p

2
σa12

,
1
p

2
σa13

,
1
p

2
σa23

,
1
p

2
σd1

,
1
p

2
σd2

form an orthonormal basis in Msa
3 with respect to the Hilbert-Schmidt inner product. In this

basis, any ρ ∈Msa
3 with Trρ = 1 can be written as

ρ =
�

1
p

3
, as12

, as13
, as23

, aa12
, aa13

, aa23
, ad1

, ad2

�

,
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and ρ−ρ∗ =
�

0, as12
, as13

, as23
, aa12

, aa13
, aa23

, ad1
, ad2

�

can be represented as a vector in R8.
Moreover, by Lemma 2.14, for every state ρ it holds

a2
s12
+ a2

s13
+ a2

s23
+ a2

a12
+ a2

a13
+ a2

a23
+ a2

d1
+ a2

d2
≤

2
3

.

States in D(C3) ⊂ B
�

ρ∗,
q

2
3

�

can be thus visualised inside the Euclidean ball B
�

0,
q

2
3

�

⊂ R8.

Bellow we present some illustrative cases obtained as projections of D(C3) onto 2-dimensional
subspaces of R8.

Case 1. A diagonal ρ ∈ Msa
3 with Trρ = 1 corresponds to

�

0, 0, 0, 0, 0, 0, ad1
, ad2

�

∈ R8.
Then

ρ = ρ∗ + ad1

1
p

2
σd1
+ ad2

1
p

2
σd2
=







1
3 +

ad1p
2
+

ad2p
6

0 0

0 1
3 −

ad1p
2
+

ad2p
6

0

0 0 1
3 − 2

ad2p
6







has nonnegative eigenvalues

1
3
±

ad1p
2
+

ad2p
6
≥ 0, and

1
3
− 2

ad2p
6
≥ 0,

which cut a triangle out of the disk a2
d1
+ a2

d2
≤ 2

3 as shown in Figure 2.3.

We remark that the three states corresponding to the vertices of the triangle, where
�

ad1
, ad2

�

are
�

0,−
q

2
3

�

,
�

1p
2
, 1p

6

�

,
�

− 1p
2
, 1p

6

�

respectively, are the pure states

ρ∗ −
1
p

3
σd2
=





0 0 0
0 0 0
0 0 1



 , ρ∗ ±
1
2
σd1
+

1

2
p

3
σd2
=





1
2 ±

1
2 0 0

0 1
2 ∓

1
2 0

0 0 0



 ,

or |2〉〈2| , |0〉〈0| , |1〉〈1| in the computational basis. If we act on |0〉〈0| with the unitary

U(t) =





cos t − sin t 0
sin t cos t 0

0 0 1



 ,

we get

U |0〉 〈0|U∗ = U





1 0 0
0 0 0
0 0 0



 U∗ =





cos2 t sin t cos t 0
sin t cos t sin2 t 0

0 0 1



 .

Note that this pure state is not diagonal unless t = π
2 . In other words, U(t) is the time evolution

of state |0〉 and U
�

π
2

�

|0〉= |1〉.

Case 2. A symmetric ρ ∈Msa
3 with Trρ = 1 corresponding to

�

as12
, as13

, 0, 0, 0, 0, 0, 0
�

∈ R8

is equal to

ρ = ρ∗ + as12

1
p

2
σs12
+ as13

1
p

2
σs13
=







1
3

as12p
2

as13p
2as12p

2
1
3 0

as13p
2

0 1
3






.
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Its eigenvalues
1
6

�

2± 3
q

2a2
s12
+ 2a2

s13

�

and
1
3

are nonnegative inside the circle with radius
p

2
3 shown in Figure 2.3 (see the red disk inside

the pink disk a2
s12
+ a2

s13
≤ 2

3 in the second image).

Case 3. Next consider a trace one ρ ∈Msa
3 corresponding to

�

0, 0, 0, 0, aa13
, 0, ad1

, 0
�

∈ R8.
Then

ρ = ρ∗ + ad1

1
p

2
σd1
+ aa13

1
p

2
σa13

=







1
3 +

ad1p
2

0 −i
aa13p

2

0 1
3 −

ad1p
2

0

i
aa13p

2
0 1

3







has eigenvalues

1
6

�

2− 3
p

2ad1

�

and
1

12

�

4+ 3
p

2ad1
± 3

Ç

8a2
a13
+ 2a2

d1

�

.

The positive eigenvalues cut a parabolic region out of the disk a2
d1
+ a2

a13
≤ 2

3 , as shown in the
third image in Figure 2.3.

We remark that the vertex of the parabola corresponds to (ad1
, aa13

) =
�

−
p

2
3 , 0

�

and its

intersections with the vertical line have coordinates
�p

2
3 , ± 2

3

�

. These three points define the
states

ρ∗ −
1
3
σd1
=





0 0 0
0 2

3 0
0 0 1

3



 and ρ∗ +
1
3
σd1
±
p

2
3
σa13

=





2
3 0 ∓i

p
2

3
0 0 0

±i
p

2
3 0 1

3



 ,

where the first state 2
3 |1〉〈1|+

1
3 |2〉〈2| is mixed with rank 2, while the next two are pure states

of the form |ϕ〉〈ϕ| for |ϕ〉=
q

2
3 |0〉 ±

ip
3
|2〉.

Case 4. Finally, consider ρ ∈Msa
3 with Trρ = 1 corresponding to

�

0,0, 0,0, aa13
, 0, 0, ad2

�

∈ R8.
Then

ρ = ρ∗ + aa13

1
p

2
σa13
+ ad2

1
p

2
σd2
=







1
3 +

ad2p
6

0 −i
aa13p

2

0 1
3 +

ad2p
6

0

i
aa13p

2
0 1

3 − 2
ad2p

6







and its eigenvalues are

1
3
+

1
p

6
ad2

and
1

12

�

4−
p

6ad2
± 3

Ç

8a2
a13
+ 6a2

d2

�

.

The ellipse inside the disk a2
d2
+ a2

a13
≤ 2

3 , representing the positive eigenvalues, is shown on

Figure 2.3. Their intersection
�

ad2
, aa13

�

=
�

−
q

2
3 , 0

�

corresponds to the pure state

ρ∗ −
1
p

3
σd2
=





0 0 0
0 0 0
0 0 1



= |2〉〈2| .
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Figure 2.3. States in B
�

0,
q

2
3

�

⊂ R8 projected to 2-dimensional planes ad1
, ad2

; as12
, as13

;
ad1

, aa13
and ad2

, aa13
respectively.

2.2 Bipartite states: separability vs. entanglement

In this section we introduce a fundamental concept, the dichotomy between separability and
entanglement, which is the key non-classical feature of quantum mechanics. The phenomenon
of entanglement only happens in composite systems.

For a classical system consisting of multiple components, the space of states is the Cartesian
product of the corresponding state spaces. If the state spaces (more precisely, the spaces of
state vectors) of the components are Hilbert spaces H1, . . . ,Hk (e.g., particles, subsystems, . . .
in the quantum setting), then the state space of the composite system is the tensor product
H =H1⊗· · · ⊗Hk. We may assume that all the factors are at least 2-dimensional, as H⊗K is
always identified with H.

Definition 2.15. On a complex multipartite Hilbert space H, a pure state ρ = |ψ〉〈ψ| ∈ D(H) is
pure separable if the state vector is a product vector, i.e., it can be written as ψ=ψ1⊗· · ·⊗ψk

for some unit vectors ψ j ∈H j . Following the canonical identification (1.3), we have

ρ = |ψ〉〈ψ|= |ψ1〉〈ψ1| ⊗ · · · ⊗ |ψk〉〈ψk| .

For this reason, pure separable states are often called pure product states.

Definition 2.16. A mixed state on H is separable if it is a convex combination of pure separable
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states. We denote the set of separable states by

SEP(H) = conv
�

|ψ1 ⊗ · · · ⊗ψk〉〈ψ1 ⊗ · · · ⊗ψk| : ψ j ∈H j for j = 1, . . . , k
	

.

States that are not separable are entangled.

By definition, the extreme points of the convex set SEP(H) are exactly the pure separa-
ble states. On the other hand, not all pure states (i.e., the extreme points of D(H)) are pure
separable states - or in other words - not all state vectors in H are product vectors. Therefore,

SEP(H) $ D(H).

Alternatively, the set SEP(H) can be presented as the convex hull of product states

SEP(H) = conv
�

ρ1 ⊗ · · · ⊗ρk : ρ j ∈ D(H j) for j = 1, . . . , k
	

. (2.9)

In particular this shows that in R,

dim SEP(H) = dimD(H) = (dimH)2 − 1.

For bipartite Hilbert spaces an even deeper result holds, namely, that the sets SEP and D have
the same inradius.

Theorem 2.17 (Gurvits-Barnum theorem, [AS17] Thm. 9.15). Let H = Cd1 ⊗Cd2 , n = d1d2

and ρ be a state on H. If the inequality

‖ρ −ρ∗‖HS ≤
1

p

n(n− 1)

holds, ρ must be separable.

In the general setting the problem whether a state is separable is NP-hard [Gha10]. This
explains why there is no known simple description of the facial structure of SEP (unlike the
geometry of D which we considered in Subsection 2.1.3). The next Lemma illustrates that,
despite having the same dimension and inradius, D is a larger set than SEP.

SEP D

|00〉〈00|

|11〉〈11|
E

zoom←−−−��

Figure 2.4. One-dimensional face of Sep.

Lemma 2.18. The convex set SEP(C2⊗C2) has a one-dimensional face (which lies in a higher
dimensional face of D(C2⊗C2) ).
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Proof. Consider the plane
E= span {|00〉 , |11〉} ⊂ C2⊗C2 .

Note that |00〉 and |11〉 are the only product vectors in E, so the intersection of SEP(C2⊗C2)
with the hyperplane

¦

A∈ B(C2⊗C2): A=
∑

αi j |i j〉〈i j| , Tr A= 1
©

is the 1-dimensional face

E = {α |00〉〈00|+ (1−α) |11〉〈11| : 0≤ α≤ 1} ⊂ SEP(C2⊗C2)

shown on Figure 2.41. On the other hand, E is not a 1-dimensional face in D(C2⊗C2), as it lies
in a 2-dimensional face of D(C2⊗C2). For example, for

|ψ〉=
1
p

2
|00〉+

1
p

2
|11〉 and |χ〉=

1
p

2
|00〉 −

1
p

2
|11〉

the states {β |ψ〉〈ψ|+ (1− β) |χ〉〈χ| : 0≤ β ≤ 1} ⊂ D(C2⊗C2) are colored blue on the figure.
We remark that a similar proof constructs one-dimensional faces of SEP(Cd1 ⊗Cd2).

By analogy with the PSD cone, it is often convenient to consider the cone of separable
operators

SEP(H) = {αρ : α≥ 0, ρ ∈ SEP(H)} . (2.10)

In some texts the cone of separable operators is defined as

SEP(Cm⊗Cn) = conv {PSD(Cm)⊗PSD(Cn)} , (2.11)

which is the same as (2.9) written in the language of cones.
We now present some families of classical states on Cd ⊗Cd that are regularly used in quan-

tum information theory. We use the computational basis {| jk〉} j,k=0,...,d−1 of Cd ⊗Cd (recall that

Cd2
, Md and Cd ⊗Cd are isomorphic vector spaces) and avail the identifications in (1.3), (1.4)

and (1.5):
Bsa(Cd ⊗Cd) ↔ Bsa(Cd)⊗ Bsa(Cd)

l ‖
Md2 Md ⊗Md ↔ Md2 .

Example 2.19 (Maximally entangled states). A pure state

|ψ〉〈ψ| ∈ D(Cd ⊗Cd) ⊂ Bsa(Cd ⊗Cd)

is maximally entangled if the state vector ψ ∈ Cd ⊗Cd is of the form

ψ=
1
p

d

d
∑

j=1

u j ⊗ v j (2.12)

for some orthonormal bases {u j} and {v j} of Cd . A unit vector ψ of such form is called a
maximally entangled vector.

1The image of the Minkowski sum of a ball and a cube is from [SPJ05].
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The case d = 2 represents bipartite systems of two qubits. The maximally entangled states,
called Bell states, are used in the majority of quantum information protocols. Written in the
computational basis |00〉 , |01〉 , |10〉 , |11〉 of C2⊗C2, the four Bell state vectors are

�

�Φ+
�

=
1
p

2
|00〉+

1
p

2
|11〉 ,

�

�Φ−
�

=
1
p

2
|00〉 −

1
p

2
|11〉 , (2.13)

�

�Ψ+
�

=
1
p

2
|01〉+

1
p

2
|10〉 ,

�

�Ψ−
�

=
1
p

2
|01〉 −

1
p

2
|10〉 .

Example 2.20. A simple calculation shows that Bell states are indeed entangled. Consider for
example

ρ =
�

�Φ+
�


Φ+
�

�=







1/2 0 0 1/2
0 0 0 0
0 0 0 0

1/2 0 0 1/2






,

which is entangled since it is not a pure separable state. In other words, |Φ+〉 is not a product
vector since it cannot be written as (α0 |0〉+α1 |1〉)⊗ (β0 |0〉+ β1 |1〉) for some α0,α1,β0,β1.

On the other hand, the mixed state

ρ =
1
2
|00〉〈00|+

1
2
|11〉〈11|=







1/2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/2







is separable. Indeed, it is a convex (statistical) combination of pure separable states

ρ =
1
2
|0〉〈0| ⊗ |0〉〈0| +

1
2
|1〉〈1| ⊗ |1〉〈1| .

Example 2.21 (Isotropic states). Isotropic states on Cd ⊗Cd are affine combinations of the
maximally mixed state (2.5) and a maximally entangled state (2.12). They are of the form

ρβ = β |ψ〉〈ψ|+ (1− β)
1
d2

I ,

where ψ is a maximally entangled state vector and − 1
d2−1 ≤ β ≤ 1.

Example 2.22 (Werner states). We define the flip operator F ∈ Bsa(Cd ⊗Cd) on product vectors
by F(x ⊗ y) = y ⊗ x and extend it by linearity. For λ ∈ [0,1] we define the Werner state as

ωλ =
1

d2 − dα
(I −αF),

where α= 1+d(1−2λ)
1+d−2λ ∈ [−1,1].
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2.2.1 Mixed states

In Definition 2.1 we defined mixed quantum states as convex combinations of pure states. In
this subsection we give a meaning to the definition; broadly speaking, using mixed states we
will be able to predict the behaviour of parts of a multipartite system.

Assume now that we have a bipartite system H⊗K and that we can only access the subsys-
tem H. We ask the following question. When our system is in a pure stateψ ∈H⊗K, what can
we tell about the H-marginal of ψ, i.e., the state describing H whose measurements are con-
sistent with measurements (if we were able to make them) of ψ. Recall Subsection 2.1.1 that
connects observables (i.e., self-adjoint operators) with actual measurements. The eigenvectors
of an observable determine the orthonormal basis in which we measure.

Suppose that the state vector ψ = ξ⊗η is a product vector. If we measure ξ in some basis
{ϕ j} of H, we obtain the j-th outcome with probability |〈ϕ j ,ξ〉|2. Hypothetically, if we had
access to the entire system H⊗K we could perform a measurement in the basis {ϕ j ⊗ ϑk},
where {ϑk} is some basis of K. Then we would obtain the ( j, k)-th outcome with probability

|〈ϕ j ⊗ ϑk,ξ⊗η〉|2 = |〈ϕ j ,ξ〉|2 · |〈ϑk,η〉|2.

Summing over k verifies that the probability of the j-th outcome on H is |〈ϕ j ,ξ〉|2.
This approach doesn’t work when ψ is not a product vector. Instead, for a given ϕ ∈H, we

define the operator
Pϕ = |ϕ〉〈ϕ| ⊗ IK ∈ Bsa(H⊗K),

which is the orthogonal projection onto the subspace {ϕ} ⊗K ⊂H⊗K. Observe that for ψ =
ξ⊗η it holds

|〈ϕ j ,ξ〉|2 = Tr
�

|ψ〉〈ψ| Pϕ j

�

,

which is independent of the basis of K and is well defined also ifψ is not a product vector. Next
we take the Schmidt decomposition of ψ ∈H⊗K defined in Corollary 1.4,

ψ=
r
∑

i=1

ai ξi ⊗ηi ,

where, assuming that ψ is not a product vector, the Schmidt rank r ≥ 2. Then we can express
the marginal probability of j-th outcome as

Tr
�

|ψ〉〈ψ| Pϕ j

�

= Tr

  

r
∑

i,l=1

aial |ξi〉〈ξl | ⊗ |ηi〉〈ηl |

!

��

�ϕ j

�


ϕ j

�

�⊗ IK
�

!

=
r
∑

i,l=1

aial Tr
�

(|ξi〉〈ξl |)
��

�ϕ j

�


ϕ j

�

�

��

Tr (|ηi〉〈ηl |)

= Tr

��

r
∑

i=1

|ai |2 |ξi〉〈ξi |

�

�

�ϕ j

�


ϕ j

�

�

�

=



ϕ j

�

�

r
∑

i=1

|ai |2 |ξi〉〈ξi |
�

�ϕ j

�

.

This lengthy calculation says that the probability of j-th outcome, when measurement is per-
formed in a basis {ϕ j} of H, is




ϕ j

�

�ρH

�

�ϕ j

�

= Tr
�

ρH

�

�ϕ j

�


ϕ j

�

�

�

, where

ρH =
r
∑

i=1

|ai |2 |ξi〉〈ξi | . (2.14)
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In other words, given a pure state ρ = |ψ〉〈ψ| on H⊗K, its H-marginal is the mixed state ρH.
The "strength" of ρH is that

• it does not depend on the basis of H in which we measure, and

• it contains all the information that can be obtained about the global state ρ on H⊗K
while being restricted to the measurements inside H.

Remark 2.23. Note that for ψ ∈H⊗K and complex numbers ωi with |ωi |= 1,

ψ=
r
∑

i=1

ai ξi ⊗ηi and ψ=
r
∑

i=1

aiωi ξi ⊗ηi

are two different decompositions ofψ that yield the same H-marginal ρH =
∑r

i=1 |ai |2 |ξi〉〈ξi |.
Therefore, in the Schmidt decomposition in Corollary 1.4, we do not need to fulfil the require-
ment that all the coefficients are nonnegative. In practice, in quantum computing, ψ is decom-
posed in the computational bases of H and K.

Remark 2.24. On the other hand, in a quantum superposition of pure states
∑

j

α jψ j ,

represented by some unit vectorsψ j ∈H, the probability amplitudesα j ∈ C (such that
∑

j α jα j =
1) encode more information than just the probabilities of the measurement outcomes. For ex-
ample, quantum interference in the two-slit experiment happens because of the relative phase
of α and β in a single qubit α |0〉+ β |1〉 considered in Example 2.4.

In reality we can never perform measurement in a global basis of the entire multipartite
system. And, even though the state of a quantum system is described by a vector (i.e., a state
vector representing a pure state or a wave function, or equivalently a rank one projection), we
showed that we can only model such a system by using mixed states.

Example 2.25. Suppose ρ = |ψ〉〈ψ| is a pure state on C2⊗C2 where ψ is one of the four Bell
vectors defined in Example 2.19. In each of the four cases, the C2-marginal on either factor is

ρC2 =
1
2
|0〉〈0|+

1
2
|1〉〈1|=

1
2

I = ρ∗.

This can be interpreted in the following way. Assume we measure in a basis {u1, u2} of the
first C2 factor. Then each of the two outcomes occurs with the probability 1

2 . Additionally,
these measurements can not distinguish between the four Bell states, even though a global
measurement of ρ in the basis of the Bell vectors would distinguish them perfectly.

We conclude this subsection with an example that illustrates how mixed states are able to
behave classically in some respects, but quantum mechanically in others.

Example 2.26. Consider the statistical combination of Bell states,

ρ =
1
4

�

�Φ+
�


Φ+
�

�+
1
4

�

�Φ−
�


Φ−
�

�+
1
4

�

�Ψ+
�


Ψ+
�

�+
1
4

�

�Ψ−
�


Ψ−
�

� .

After expanding ρ in the computational basis we get ρ = 1
4 I = ρ∗, the maximally mixed state

in D(C2⊗C2).
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2.2.2 Partial trace

In the previous subsection we learned that operators representing mixed states (rather than
state vectors) are a natural way of modeling quantum systems, in particular when modeling a
subsystem of a quantum system.

On a bipartite Hilbert space H⊗K, the H-marginals can be elegantly expressed by partial
trace, which is defined as

TrK = IdB(H) ⊗ Tr: B(H)⊗ B(K)→ B(H).

This means that
TrK(σ⊗τ) = Tr(τ)σ

for σ ∈ B(H) and τ ∈ B(K), and the map extends by linearity on the entire B(H)⊗ B(K).
We now show that the partial trace of ρ = |ψ〉〈ψ| ∈ B(H⊗K) ≡ B(H)⊗ B(K) with respect

to K is exactly the H-marginal ρH obtained in (2.14) in Subsection 2.2.1. Indeed, if ψ =
ξ⊗η ∈H⊗K is a product vector, then

TrK (|ξ⊗η〉〈ξ⊗η|) = TrK (|ξ〉〈ξ| ⊗ |η〉〈η|) = |ξ〉〈ξ| ,

and if ψ=
∑r

i=1 ai ξi ⊗ηi is a Schmidt decomposition, then

TrK (|ψ〉〈ψ|) =
r
∑

i=1

|ai |2 |ξi〉〈ξi |= ρH. (2.15)

Example 2.27. The identification (1.5) between tensor products of vectors and matrices, i.e.,
ψ ∈ Cd1 ⊗Cd2 is identified with M ∈Md1,d2

, yields the following equality,

TrCd2 |ψ〉〈ψ|= M M∗.

The next Lemma shows that H-marginals of pure states on H⊗K yield the entire set of
quantum states D(H), as long as dimK≥ dimH.

Lemma 2.28 (Purification). On a bipartite system H⊗K with dimK ≥ dimH, the set of quan-
tum states on H (i.e., D(H)) can be obtained as H-marginals of pure states.

Proof. For ρ ∈ D(H) ⊂ Bsa(H) with spectral decomposition ρ =
∑r

i=1λi |ξi〉〈ξi |, we choose an
orthonormal basis {ηi} of K and define

ψ=
r
∑

i=1

Æ

λiξi ⊗ηi ∈H⊗K.

Then TrK (|ψ〉〈ψ|) = ρ. We call |ψ〉〈ψ| (or simply ψ) a purification of ρ.

2.3 PPT states: First attempts at detecting entanglement

As explained in Section 2.2, in the general setting, the problem whether a state is separable is
NP-hard. The aim of this section is to construct a map (a superoperator, acting between spaces
of operators, as defined in the last paragraph of Section 1.2) that will be able to detect some
entangled states.
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In Section 1.2 we introduced canonical notions like duality, adjoint, trace, inner product,
etc., that are independent on the choice of a basis in the Hilbert space H. On the other hand,
transposition in linear algebra is usually defined with respect to the standard basis and is not
canonical. Now we give a definition of transposition with respect to an orthonormal basis {ϕ j}
of H. Once the basis is fixed, we can identify the set of operators with the set of matrices

B(H) ↔ Mn
∑n

i, j=1 ai j

�

�ϕi

�


ϕ j

�

� ↔ [ai j]
,

and define the transposition as

T : B(H) −→ B(H)
∑

i, j ai j

�

�ϕi

�


ϕ j

�

� 7→
∑

i, j ai j

�

�ϕ j

�


ϕi

�

�

,

which equals T ([ai j]) = [a ji] in the matrix representation. Sometimes we will write AT = T (A).
This allows us to define the partial transposition on bipartite systems as follows.

Definition 2.29. Let H⊗K be a bipartite Hilbert space. Denote by T the transposition on B(H)
with respect to a specified basis. The partial transposition (or partial transpose) with respect to
the first factor H is

Γ := T ⊗ IdB(K) : B(H⊗K) −→ B(H⊗K) .

The partial transposition with respect to the second factor is defined by switching the roles of
H and K. The partial transposition of a state ρ ∈ D(H⊗K) with respect to the first factor will
be denoted by ρΓ = Γ (ρ).

A convenient way to compute the partial transposition is by using the block matrix repre-

sentation (1.2). If ρ ∈ D(H⊗K) is represented by a block operator
�

Mi j

�dimH

i, j=1 , where each

Mi j ∈ B(K), then ρΓ corresponds to the block operator
�

M ji

�dimH

i, j=1 . Analogously, the partial

transposition of ρ with respect to the second factor is represented by
�

M T
i j

�dimH

i, j=1

Example 2.30. For the Bell state ρ = |Φ+〉〈Φ+| with |Φ+〉= 1p
2
|00〉+ 1p

2
|11〉 we have

ρ =
1
2









1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1









and ρΓ =
1
2









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









.

Another way to represent the partial transposition is to write Γ as a reflection over a subspace
in Bsa(H⊗K): since Γ 2 = Id, we can write Γ = 2PE − Id, where PE is the projection onto the
subspace

E =
�

A∈ Bsa(H⊗K): AΓ = A
	

.

The following proposition shows that, even though the partial transposition depends on the
choice of a basis, the eigenvalues of a partially transposed operator are the same regardless of
the basis with respect to which the state is transposed.

Proposition 2.31. The eigenvalues of the partial transposition of an operator in B(H⊗K) do not
depend on on a choice of basis.
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Proof. Denote by T and T ′ the transpositions with respect to the orthonormal bases {ϕ j} and
{ϕ′j} of H. Let U be the unitary transformation on H such that U(ϕ j) = ϕ′j . We will prove that
for X ∈ B(H) it holds

T (X ) = (U T (U))∗ T ′(X )U T (U), (2.16)

which shows that the partial transpositions Γ = T ⊗ IdB(K) and Γ ′ = T ′ ⊗ IdB(K) are conjugates
of each other via the unitary transformation (U T (U))⊗ IK; and since eigenvalues are preserved
under unitary conjugation this will conclude the proof. By linearity it is enough to verify (2.16)

for X =
�

�

�ϕ′i

¶¬

ϕ′j

�

�

�. Then T ′(X ) =
�

�

�ϕ′j

¶¬

ϕ′i

�

�

�, and since X =
�

�Uϕi

�


Uϕ j

�

�= U
�

�ϕi

�


ϕ j

�

�U∗, we have

T (X ) = T (U∗)
�

�ϕ j

�


ϕi

�

� T (U) = T (U∗)U∗
�

�

�ϕ′j

¶¬

ϕ′i

�

�

�U T (U) = T (U)∗U∗
�

�

�ϕ′j

¶¬

ϕ′i

�

�

�U T (U),

as claimed.

It is important to note that the partial transposition (unlike transposition) does not neces-
sarily preserve the spectrum, as we demonstrate in the next example.

Example 2.32 (Eigenvalues of the partial transpose of a pure state.). For a given state vec-
tor ψ ∈H⊗K, let ψ =

∑

j σ j ϕ j ⊗ ϑ j be its Schmidt decomposition from Corollary 1.4. Then,
|ψ〉〈ψ| is the projection ontoψwith the only nonzero eigenvalue 1 and its corresponding eigen-
vector ψ. In the basis {ϕi ⊗ ϑ j} of H⊗K we can write

|ψ〉〈ψ|=
∑

i, j

σiσ j

�

�ϕi ⊗ ϑi

�


ϕ j ⊗ ϑ j

�

�=
∑

i, j

σiσ j

�

�ϕi

�


ϕ j

�

�⊗
�

�ϑi

�


ϑ j

�

� .

Then,
|ψ〉〈ψ|Γ =

∑

i, j

σiσ j

�

�ϕ j

�


ϕi

�

�⊗
�

�ϑi

�


ϑ j

�

�=
∑

i, j

σiσ j

�

�ϕ j ⊗ ϑi

�


ϕi ⊗ ϑ j

�

�

has the following spectrum:

• eigenvalues σ2
i with eigenvectors ϕi ⊗ ϑi ,

• eigenvalues σiσ j with eigenvectors ϕi ⊗ ϑ j +ϕ j ⊗ ϑi ,

• eigenvalues −σiσ j with eigenvectors ϕi ⊗ ϑ j −ϕ j ⊗ ϑi .

A state whose partial transpose has nonnegative eigenvalues deserves a special name, it is
called a state with positive partial transpose (or simply a PPT state).

Definition 2.33. We say that a state ρ ∈ D(H⊗K) has a positive partial transpose if the operator
ρΓ ∈ Bsa(H⊗K) is positive. We denote by PPT(H⊗K), or shortly PPT, the convex set of PPT
states.

Proposition 2.31 implies that PPT states are well defined since the spectrum is independent
on the choice of a basis. Moreover, it is not necessary to specify whether we apply the partial
transpose on the first or the second factor. Indeed, switching the roles of H and K is the same
as applying the full transposition, which preserves the spectrum.

Since the partial transposition preserves the trace, we observe that ρ is a PPT state if and
only if ρΓ is a state. In other words, the set of PPT states is the intersection

PPT= D∩ Γ (D).
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D

SEP

Γ (D)

x



||||||
PPT= D∩ Γ (D)

Figure 2.5. For dimHdimK> 6 the inclusion Sep ⊂ PPT=D∩ Γ (D) is strict.

The partial transposition is a linear map that preserves the Hilbert-Schmidt norm, therefore
Γ : D → Γ (D) is an isometry as illustrated on Figure 2.5. Note that, even though Γ depends
on the chosen basis and is thus not a canonical map, the intersection PPT = D∩ Γ (D) is basis-
independent.

PPT states have attracted much attention in the literature because, as we will deduce from
the PPT criterion, they can be seen as rough approximations to separable states.

Proposition 2.34 (PPT criterion (or Peres-Horodecki criterion due to [HHH96] and [Per96])).
The following inclusion holds

SEP(H⊗K) ⊂ PPT(H⊗K).

In other words, if ρ ∈ D(H⊗K) is a separable state, then ρ is a PPT state.

Proof. The sets SEP(H⊗K) and PPT(H⊗K) are both convex, therefore it suffices to show that
the extreme points of SEP (i.e., pure separable states by Definition 2.15 and Definition 2.16)
are PPT. Pure separable states are pure product states of the form

ρ = |ξ⊗η〉〈ξ⊗η|= |ξ〉〈ξ| ⊗ |η〉〈η|

for some unit vectors ξ ∈H,η ∈K. The partial transpose is then

ρΓ = |ξ〉〈ξ|Γ ⊗ |η〉〈η|=
�

�

�ξ
¶¬

ξ
�

�

�⊗ |η〉〈η|=
�

�

�ξ⊗η
¶¬

ξ⊗η
�

�

� ,
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where ξ is the coordinate-wise complex conjugate of ξ. This shows that ρΓ is positive and
hence ρ has PPT.

The strength of the Peres-Horodecki criterion is in detecting entanglement: if the partial
transpose of a state is not positive, the state itself must be non-separable, i.e., entangled.

Example 2.35. The pure Bell state |Φ+〉〈Φ+| from Example 2.30 is entangled since |Φ+〉〈Φ+|Γ

has eigenvalues ±1 (this can be verified by calculating the spectrum directly or by using Exam-
ple 2.32) and is thus not positive semidefinite.

However, the PPT criterion is (in general, as shown on Figure 2.5) only a necessary condition
for separability. In small dimensions the next lemma and theorem show when the PPT criterion
is also a sufficient condition for separability.

Lemma 2.36. A pure state has a positive partial transpose if and only if it is separable.

Proof. In Example 2.32 we computed the eigenvalues of the partial transpose of a pure state
Ψ ∈ H⊗K: |ψ〉〈ψ|Γ has a negative eigenvalue ⇐⇒ the Schmidt decomposition of ψ has at
least two nonzero Schmidt coefficients⇐⇒ Ψ is entangled.

It follows that |ψ〉〈ψ| is a PPT state if and only if ψ has exactly one nonzero Schmidt coef-
ficient, which means that ψ is a product vector and therefore |ψ〉〈ψ| is separable.

Theorem 2.37 (Størmer-Woronowitz theorem, [AS17]:Thm 2.15). On the Hilbert spaces

C2⊗C2, and C2⊗C3, C3⊗C2,

representing bipartite systems of qubits and qutrits, every PPT state is separable. In other words,
SEP

�

C2⊗C2
�

= PPT
�

C2⊗C2
�

and SEP
�

C2⊗C3
�

= PPT
�

C2⊗C3
�

.

It was observed by the Horodecki group [HHH96] that the 2 ⊗ 2 case of Theorem 2.37
follows from the work of Størmer [Stø63], and the 2 ⊗ 3 case follows from the results by
Woronowitz [Wor76]. For a new proof in the language of quantum information theory see [AS17,
Theorem 2.36]. In fact,C2⊗C2 andC2⊗C3 are the only bipartite spaces for which the inclusion
SEP ⊂ PPT= D∩ Γ (D) is not strict.

PPT states were introduced by Peres [Per96], a physicist and pioneer in quantum informa-
tion theory. Within a short period of time P. Horodecki [Hor97], another physicist working in the
field of quantum information theory, published an example of a PPT state in D

�

C3⊗C3
�

which
is not separable. Actually, analogous examples had been constructed much earlier by mathe-
maticians studying C∗-algebras (see Remark 1.2) and matrix algebras: examples of [Stø82],
[TT88], [Osa91], [KK94] are all generalizations of the famous Choi map [Cho75b], which is
an indecomposable map in the least possible dimension, 3 × 3 matrices (check forward Sec-
tion 3.2 and Example 3.47). These examples translated to the language of states correspond
to non-separable PPT states in D

�

C3⊗C3
�

. Examples of entangled PPT states are known in
D
�

Cd1 ⊗Cd2
�

for all dimensions d1 ≥ 3, d2 ≥ 3. A modern discussion of PPT states can be found
in [BŻ17].

Remark 2.38. Besides pure states and states on C2⊗C2 and C2⊗C3, the Werner states in
Example 2.22 are another family of states for which separability and PPT property are equiva-
lent. A proof can be found in [AS17, Proposition 2.16], where it is shown that a Werner state
ωλ ∈ D(Cd ⊗Cd) is separable⇐⇒ωλ is PPT⇐⇒ λ≥ 1

2 .



30 2.3 PPT states

Example 2.39. Using the above classification of separable Werner states, we will show that an
isotropic state (defined in Example 2.21)

ρβ = β |ψ〉〈ψ|+ (1− β)
1
d2

I ∈ D(Cd ⊗Cd),

where ψ = 1p
d

∑d
j=1 u j ⊗ v j , is separable if and only if β ≤ 1

d+1 . From Example 2.32 (in which
we computed the eigenvalues of the partial transposition of a pure state) we conclude that ρΓ

β

has eigenvalues ±βd +
1−β
d2 . Therefore, ρβ has PPT if and only if β ≤ 1

d+1 , which implies that ρβ
is entangled for β > 1

d+1 . Next observe that

ρΓβ =
β

d
F + (1− β)

1
d2

I ,

(where F is the flip operator in Example 2.22) and that ρβ =ωΓλ for λ= (β(d2−1)+d+1)/2d.
Our claim then follows since ωλ is separable for λ≥ 1

2 .

We conclude the section with another superoperator that is able to detect entanglement.

Definition 2.40. The realignment of an operator in B
�

Cd1 ⊗Cd2
�

is the map

R: B
�

Cd1 ⊗Cd2
�

−→ B
�

Cd2 ⊗Cd2 ,Cd1 ⊗Cd1
�

|i j〉〈kl| 7→ |ik〉〈 jl| ,
�

for |i〉 , |k〉 ∈ Cd1 , | j〉 , |l〉 ∈ Cd2
�

,
‖ ‖

|i〉〈k| ⊗ | j〉〈l| |i〉〈 j| ⊗ |k〉〈l|

defined on the computational basis and extended by linearity.

Proposition 2.41 (The realignment criterion). The trace norm of an operator is defined as
‖M‖1 = Tr |M |, where |M |= (M∗M)1/2.

(i) A separable state ρ ∈ D
�

Cd1 ⊗Cd2
�

has ‖ρR‖1 ≤ 1.
(ii) A pure entangled state ρ ∈ D

�

Cd1 ⊗Cd2
�

has ‖ρR‖1 > 1.

Proof. (i) For unit vectors ξ ∈ Cd1 ,η ∈ Cd2 we have

|ξ⊗η〉〈ξ⊗η|R =
�

�

�ξ⊗ ξ
¶¬

η⊗η
�

�

� .

Then ‖ |ξ⊗η〉〈ξ⊗η|R ‖1 = 1, and from the triangle inequality for ‖ · ‖1 it follows that any
separable state (which is a convex combination of pure product states) has ‖ρR‖1 ≤ 1.

(ii) Consider a pure state ρ = |ψ〉〈ψ|, where ψ ∈ Cd1 ⊗Cd2 and ψ =
∑

j σ j ϕ j ⊗ ϑ j is its
Schmidt decomposition from Corollary 1.4. Then,

ρR =
∑

i, j

σiσ j

�

�

�ϕi ⊗ϕ j

¶¬

ϑi ⊗ ϑ j

�

�

� .

The sets
�

ϕi ⊗ϕ j

	

and
¦

ϑi ⊗ ϑ j

©

are orthonormal inCd1 ⊗Cd1 andCd2 ⊗Cd2 respectively, there-

fore ‖ρR‖1 =
∑

i, j σiσ j =
�∑

i σi

�2
. Then 1 = 〈ψ|ψ〉 =

∑

i σ
2
i implies that ‖ρR‖1 > 1 unless ρ

is separable.
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Example 2.42. For the Bell state ρ = |Φ+〉〈Φ+| with |Φ+〉= 1p
2
|00〉+ 1p

2
|11〉 we get

ρR =
1
2
|00〉〈00|+

1
2
|01〉〈01|+

1
2
|10〉〈10|+

1
2
|11〉〈11| .

Its norm ‖ρR‖1 = 2 certifies that the Bell state is entangled.

The realignment criterion is neither weaker nor stronger than the Peres-Horodecki criterion.
Other separability criteria can be found in [HHHH09].
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Chapter 3

Superoperators and quantum maps

This chapter is devoted to the study of linear maps acting between spaces of operators, hence
the name superoperators. In the Introduction we explained that operator algebras equipped
with the Hilbert-Schmidt inner product are also Hilbert spaces. Any superoperator is thus just
a usual operator acting on a larger Hilbert space.

Like in Chapter 2, we merge the mathematical and physical notions (as it is done in quantum
information theory for the last 20 years), and we associate superoperators between spaces of
operators with quantum maps or quantum operations acting on states. We introduce completely
positive maps and the associated quantum channels, we construct entanglement witnesses and
derive criteria for detecting entangled states.

3.1 Positive and completely positive maps

Definition 3.1. The linear map Φ: B(H) → B(K) is positive or positivity preserving if it maps
positive operators into positive operators. In other words, the image of every positive semi-
definite operator on H is a positive semidefinite operator on K. The map Φ is said to be n-
positive if its n-th ampliation

Φ(n) := Φ⊗ Id: B(H⊗Cn)→ B(K⊗Cn) (3.1)

is positive. (Note that if Φ is n-positive, then Φ is automatically k-positive for any k < n.) When
Φ is n-positive for all n ∈ N, it is said to be completely-positive. The set of completely positive
maps from B(H) to B(K), which is clearly a convex cone in B (B(H), B(K)), will be denoted by
CP(H,K).

Example 3.2. Transposition T is an example of a positive map which is not 2-positive (since
the partial transposition in Definition 2.29 is the 2-nd ampliation of the transposition) and thus
it is not completely positive. For the proof see Example 2.35, where we showed that the partial
transposition of the pure Bell state has a negative eigenvalue.

3.1.1 The Choi and Jamiołkowski isomorphisms

Before we give a structure theorem for completely positive maps, we introduce the (basis-
independent) Jamiołkowski isomorphism and the (basis-dependent, but often more useful)

33
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Choi isomorphism. Choi’s and Jamiołkowski’s isomorphisms are rarely distinguished in the
literature; we will explain their relation in Remark 3.3.

Recall the canonical isomorphisms between tensor products defined in the Introduction:

(H1⊗H2)
∗↔H∗1⊗H

∗
2 and H∗1⊗H2↔ B(H1,H2),

where H∗ = B(H,C) is the dual Hilbert space of linear functionals. This induces another
canonical isomorphism, which can be written concretely via the trace duality,

B(H2,H1) ↔ B(H1,H2)
∗

S 7→ T 7→ Tr ST.

A straightforward iteration of the above yields that B (B(H1), B(H2)) and B(H2⊗H1) are both
canonically isomorphic to H1⊗H∗1⊗H2⊗H∗2, which defines the Jamiołkowski isomorphism

J : B (B(H1), B(H2)) −→ B(H2⊗H1).

If we select any basis {ei} in H1 and denote the corresponding operators by Ei j =
�

�ei

�


e j

�

� ∈
B(H1), then the explicit representation of J is

J : B (B(H1), B(H2)) −→ B(H2⊗H1)

Φ 7→
∑

i, j

Φ(Ei j)⊗ E ji .

Once a basis of H1 is fixed, we can define the Choi isomorphism as the C-linear isomorphism

C : B (B(H1), B(H2)) −→ B(H2⊗H1)

Φ 7→
∑

i, j

Φ(Ei j)⊗ Ei j .

We name the matrix CΦ := C(Φ) the Choi matrix of Φ.

Remark 3.3. The Choi isomorphism C and the Jamiołkowski isomorphism J are related via
the partial transposition in Definition 2.29. Indeed, let Γ denote the partial transposition on
H2⊗H1 with respect to the second factor H1, then C = Γ ◦ J . This relation is consistent with
the fact that C and Γ are both basis-dependent, whereas the Jamiołkowski isomorphism is not.

In is often useful to know which superoperators in B (B(H1), B(H2)) correspond to rank
one operators in B(H2⊗H1) under the Choi isomorphism. In particular, by applying Choi’s
theorem 3.9, we will be able to construct superoperators that the Choi isomorphism maps to
pure states.

Lemma 3.4. For given A, B ∈ B(H1,H2) consider the map

Φ: B(H1) −→ B(H2)

X 7→ AX B∗.

The Choi matrix of Φ is C(Φ) = |a〉〈b|, where a = vecA and b = vec B are vectors in H2⊗H1

defined in (1.4). Recall that operators A, B have rank 1 if and only if the corresponding vectors a, b
are product vectors.
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Proof. By C-linearity it is enough to prove the lemma for A= |ψ〉〈ei | and B =
�

�χ
�


e j

�

� for some
ψ,χ ∈ H2 and basis vectors ei , e j ∈ H1. By definition we have a = vec A = ψ ⊗ ei and b =
vec B = χ ⊗ e j , then

|a〉〈b|=
�

�ψ⊗ ei

�


χ ⊗ e j

�

�= |ψ〉〈χ| ⊗
�

�ei

�


e j

�

�= |ψ〉〈χ| ⊗ Ei j

and
C(Φ) =

∑

i, j

AEi jB
∗ ⊗ Ei j = |ψ〉 〈ei |ei〉




e j

�

�e j

�

〈χ| ⊗ Ei j = |ψ〉〈χ| ⊗ Ei j .

The proof of the next Lemma shows how a superoperator is connected to its Choi matrix in
the computational basis.

Lemma 3.5. The matrix of a superoperator Φ: B(Cd1) → B(Cd2) with respect to the standard
bases {Ei j}1≤i, j≤d1

and {Ekl}1≤k,l≤d2
is equal to C(Φ)R, where R is the realignment of operators

from B(Cd2 ⊗Cd1) in Definition 2.40.

Proof. Recall the identification (1.2) of the space of operators B(Cm⊗Cn) with mn×mn block
matrices. We can represent C(Φ) ∈ B(Cd2 ⊗Cd1) as a d2 × d2 block matrix whose elements are
d1 × d1 matrices defined as

C(Φ) = [C(Φ)kl]
d2

k,l=1 ,

where each

C(Φ)kl =
� 


ek ⊗ ei

�

�C(Φ)
�

�el ⊗ e j

��d1

i, j=1

=
� 


ek ⊗ ei

�

�Φ(Ei j)⊗ Ei j

�

�el ⊗ e j

��d1

i, j=1 (3.2)

=
�

〈ek|Φ(Ei j) |el〉
�d1

i, j=1 .

This shows that the Choi matrix has the following entries: the i j-th entry of the kl-th block is
the kl-th entry of Φ(Ei j). Then C(Φ)R ∈ B

�

Cd1 ⊗Cd1 ,Cd2 ⊗Cd2
�

is the matrix representing Φ by
the definition of R.

Example 3.6. In Section 3.3 we will need to compute the Choi matrix of a superoperator Φ
acting on M3 = B(C3). The explicit formula follows from (3.2). Let Φ(Ei j)kl denote the kl-th
entry of the matrix Φ(Ei j) (we keep the indices consistent with the computational basis, i.e.,
i, j, k, l ∈ {0, 1,2}). Then C(Φ) is equal to





























Φ(E00)00 Φ(E01)00 Φ(E02)00 Φ(E00)01 Φ(E01)01 Φ(E02)01 Φ(E00)02 Φ(E01)02 Φ(E02)02

Φ(E10)00 Φ(E11)00 Φ(E12)00 Φ(E10)01 Φ(E11)01 Φ(E12)01 Φ(E10)02 Φ(E11)02 Φ(E12)02

Φ(E20)00 Φ(E21)00 Φ(E22)00 Φ(E20)01 Φ(E21)01 Φ(E22)01 Φ(E20)02 Φ(E21)02 Φ(E22)02

Φ(E00)10 Φ(E01)10 Φ(E02)10 Φ(E00)11 Φ(E01)11 Φ(E02)11 Φ(E00)12 Φ(E01)12 Φ(E02)12

Φ(E10)10 Φ(E11)10 Φ(E12)10 Φ(E10)11 Φ(E11)11 Φ(E12)11 Φ(E10)12 Φ(E11)12 Φ(E12)12

Φ(E20)10 Φ(E21)10 Φ(E22)10 Φ(E20)11 Φ(E21)11 Φ(E22)11 Φ(E20)12 Φ(E21)12 Φ(E22)12

Φ(E00)20 Φ(E01)20 Φ(E02)20 Φ(E00)21 Φ(E01)21 Φ(E02)21 Φ(E00)22 Φ(E01)22 Φ(E02)22

Φ(E10)20 Φ(E11)20 Φ(E12)20 Φ(E10)21 Φ(E11)21 Φ(E12)21 Φ(E10)22 Φ(E11)22 Φ(E12)22

Φ(E20)20 Φ(E21)20 Φ(E22)20 Φ(E20)21 Φ(E21)21 Φ(E22)21 Φ(E20)22 Φ(E21)22 Φ(E22)22





























.
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In the literature the Choi isomorphism is often defined as

C̃ : B (B(H1), B(H2)) −→ B(H1⊗H2)

Φ 7→
∑

i, j

Ei j ⊗Φ(Ei j).

In this representation, the Choi matrix C̃(Φ) has a simpler block form. For Φ: B(Cd1)→ B(Cd2),

C̃(Φ) =
�

Φ(Ei j)
�d1

i, j=1 . (3.3)

In Example 3.6, the alternative Choi matrix of Φ: M3→M3 is

C̃(Φ) =





Φ(E00) Φ(E01) Φ(E02)
Φ(E10) Φ(E11) Φ(E12)
Φ(E20) Φ(E21) Φ(E22)



 .

The two different definitions of the Choi matrix do not change the theory succeeding Choi’s
therem 3.9 because of the following lemma.

Lemma 3.7. Let Φ: B(Cd1) → B(Cd2) be a superoperator. The Choi matrix C(Φ) is positive
semidefinite if and only if C̃(Φ) is positive semidefinite.

Proof. Consider ψ=
∑

k βk ξk ⊗ηk ∈ Cd2 ⊗Cd1 . The lemma follows from the following equali-
ties

〈ψ|C(Φ)|ψ〉 =
®

∑

k

βk ξk ⊗ηk

�

�

�

�

�

∑

i, j

Φ(Ei j)⊗ Ei j

�

�

�

�

�

∑

l

βl ξl ⊗ηl

¸

=

∑

k,l

βkβl

∑

i, j

〈ξk|Φ(Ei j)|ξl〉 〈ηk|Ei j |ηl〉 =

®

∑

k

βk ηk ⊗ ξk

�

�

�

�

�

∑

i, j

Ei j ⊗Φ(Ei j)

�

�

�

�

�

∑

l

βl ηl ⊗ ξl

¸

=




ψ̃
�

�C̃(Φ)
�

�ψ̃
�

,

for ψ̃=
∑

k βk ηk ⊗ ξk ∈ Cd1 ⊗Cd2 .

3.1.2 Choi’s theorem

Recall that in the definition of the Choi isomorphism on page 34 we fixed a basis {ei} in H1.
Then the corresponding Choi matrix can be rewritten in an elegant way (by repeating the proof
of Lemma 3.5) as follows:

C(Φ) =
�

Φ⊗ IdB(H1)

�

(|χ〉〈χ|) , (3.4)

where χ =
∑

i ei ⊗ ei ∈ H1⊗H1. (Note that 1/
p

dimH1χ is a maximally entangled state
vector (2.12).) Maps of the form

Φ⊗ IdB(H1)

are called extensions of Φ; for example, the partial transposition Γ (from Definition 2.29) is an
extension of the transposition T .
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Throughout this section we will consider self-adjointness-preserving superoperators, defined
as linear maps

Φ: B(H1)→ B(H2) such that Φ (Bsa(H1)) ⊂ Bsa(H2).

If we restrict a self-adjointness-preserving C-linear map Φ: B(H1)→ B(H2), we obtain an R-
linear map Ψ : Bsa(H1) → Bsa(H2). This is in actually a one-to-one correspondence, as Φ can
be obtained from Ψ by complexification. Indeed, if we write X ∈ B(H1) as a sum of self-adjoint
operators

X =
X + X ∗

2
+ i

X − X ∗

2i
, this implies Φ(X ) = Ψ

�

X + X ∗

2

�

+ iΨ
�

X − X ∗

2i

�

.

Lemma 3.8. The following properties of a map Φ: B(H1)→ B(H2) are equivalent:

1. Φ is self-adjointness-preserving,

2. Φ(X ∗) = (Φ(X ))∗ for any X ∈ B(H1),

3. J(Φ) ∈ Bsa(H2⊗H1),

4. C(Φ) ∈ Bsa(H2⊗H1).

Proof. It is straightforward to check the implications 2. =⇒ 3. =⇒ 4. =⇒ 1. The implication
1. =⇒ 2. follows by C-linearity of Φ. Indeed, the equality Φ(Ekl) = Φ(Elk)∗ follows from the
linear equations:

Φ(Ekl) +Φ(Elk) = Φ(Ekl + Elk) = (Φ(Ekl + Elk))
∗ = Φ(Ekl)

∗ +Φ(Elk)
∗,

iΦ(Ekl)− iΦ(Elk) = Φ(iEkl − iElk) = (Φ(iEkl − iElk))
∗ = − iΦ(Ekl)

∗ + iΦ(Elk)
∗.

The adjoint of a self-adjointness-preservingΦ is the unique adjoint superoperatorΦ∗ : B(H2)→
B(H1) with respect to the Hilbert-Schmidt inner product, thus

〈X ,Φ(Y )〉HS = 〈Φ∗(X ), Y 〉HS

Tr (X ∗Φ(Y )) = Tr (Φ∗(X ∗)Y ),

where X ∈ B(H2) and Y ∈ B(H1). Note that since Φ is self-adjointness-preserving, also Φ∗ is
self-adjointness-preserving.

We have now prepared all the notions to state an important and useful structure theorem
for completely positive maps.

Theorem 3.9 (Choi’s theorem). For a self-adjointness-preserving map Φ: B(H1) → B(H2) the
following statements are equivalent:

1. The map Φ is completely positive.

2. The Choi matrix C(Φ) ∈ Bsa(H2⊗H1) is positive semidefinite.

3. There exist operators A1, . . . , AN ∈ B(H1,H2) such that, for any X ∈ B(H1), it holds

Φ(X ) =
N
∑

n=1

AnXA∗n. (3.5)
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Proof. We first prove the implication 3. =⇒ 1.. By Definition 3.1, Φ is completely positive if
every m-ampliation Φ(m) = Φ⊗ Id: B(H1⊗Cm)→ B(H2⊗Cm) is positive. By the spectral theo-
rem and by linearity it is enough to verify positivity on rank one operators |v〉〈v| ∈ B(H1⊗Cm),
where v =

∑

i, j λi j ei ⊗ | j〉. Then

Φ(m) (|v〉〈v|) =
∑

i, j,k,l

λi jλkl Φ
(m) (|ei〉〈ek| ⊗ | j〉〈l|) =

∑

i, j,k,l

λi jλkl Φ (|ei〉〈ek|)⊗ | j〉〈l|=

N
∑

n=1

∑

i, j,k,l

λi jλkl (|Anei〉〈Anek|)⊗ | j〉〈l|=

N
∑

n=1

|wn〉〈wn| ,

where wn =
∑

i, j λi j (Anei)⊗ | j〉, which is clearly positive.
The implication 1.=⇒ 2. follows from the Choi matrix representation (3.4).
Finally we prove 2. =⇒ 3. Since C(Φ) is positive semi-definite, the spectral theorem yields
vectors an ∈H2⊗H1 such that

C(Φ) =
∑

n

|an〉〈an| .

By Lemma 3.4, each |an〉〈an| equals the Choi matrix of the map X 7→ AnXA∗n, where an = vec An

and An ∈ B(H1,H2). This together with the linearity of the Choi isomorphism proves (3.5).

Definition 3.10 (Kraus decomposition). A decomposition of the form (3.5) is called a Kraus
decomposition of Φ. As seen in the proof of Theorem 3.9, the smallest possible N for which a
Kraus decomposition exists is equal to the rank of C(Φ), hence it is referred to as the Kraus rank
of Φ. In particular, this means that the Kraus rank of a completely positive map Φ: B(H1) →
B(H2) is at most dimH1 dimH2.

A simple check shows that a self-adjointness-preserving superoperator Φ: B(H1)→ B(H2)
is positivity preserving if and only if its adjoint Φ∗ : B(H2)→ B(H1) is positivity preserving. By
the spectral theorem it suffices to verify the semi-definiteness on rank one operators, and by
Lemma 3.8, 2. we get,

〈ψ2|Φ (|ψ1〉〈ψ1|) |ψ2〉 = Tr (|ψ2〉〈ψ2|Φ (|ψ1〉〈ψ1|)) = 〈|ψ2〉〈ψ2| ,Φ (|ψ1〉〈ψ1|)〉HS

‖
〈ψ1|Φ∗ (|ψ2〉〈ψ2|) |ψ1〉 = Tr (Φ∗ (|ψ2〉〈ψ2|) |ψ1〉〈ψ1|) = 〈Φ∗ (|ψ2〉〈ψ2|) , |ψ1〉〈ψ1|〉HS

and therefore the following are equivalent:

• Φ is positivity preserving,

• Φ (|ψ1〉〈ψ1|) is positive semidefinite for all ψ1 ∈H1,

• 〈ψ2|Φ (|ψ1〉〈ψ1|) |ψ2〉 ≥ 0 for all ψ1 ∈H1 and ψ2 ∈H2,

• Φ∗ (|ψ2〉〈ψ2|) is positive semidefinite for all ψ2 ∈H1,

• Φ∗ is positivity preserving.
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An analogous proof shows that for a given n ∈ N, Φ is n-positive if and only if Φ∗ is n-positive.
Moreover, Φ is completely positive if and only if its adjoint Φ∗ is completely positive. This can be
seen also from the Kraus decomposition (3.5) of Φ, which is related to the Kraus decomposition
of Φ∗ in the following way,

Φ∗(Y ) =
N
∑

n=1

A∗nYAn for all Y ∈ B(H2).

Corollary 3.11. The statements of Choi’s theorem 3.9 are equivalent to the fact that Φ is n-positive,
where n=min {dimH1, dimH2}.

Proof. Without loss of generality we can assume that dimH1 ≤ dimH2, otherwise we switch
the roles of H1 and H2 by considering Φ∗. Then the corollary follows from the proof of 3.=⇒ 1.
in Theorem 3.9.

Corollary 3.12. Any self-adjointness-preserving map Φ: B(H1) → B(H2) is a difference of two
completely positive maps.

Proof. We will write the Choi matrix C(Φ) ∈ Bsa(H2⊗H1) as a difference of two positive op-
erators and then apply Choi’s theorem 3.9. By the spectral theorem, C(Φ) = U DU∗ for some
unitary U and a real diagonal matrix D. In D we can separate the nonnegative and negative
eigenvalues. In other words, D = D≥0 − D<0 where D≥0 and D<0 are diagonal with nonegative
entries, therefore C(Φ) = U D≥0U∗ − U D<0U∗.

In the next examples we explore some further properties of positive and completely positive
maps.

Example 3.13. We will show thatΦ: B(H1)→ B(H2) andΨ : B(K1)→ B(K2) being completely
positive maps implies that Φ⊗Ψ and Φ ◦Ψ are completely positive.

Note that the composition is defined only when K2 =H1. Then Φ◦Ψ : B(K1)→ B(H2) has
the following Kraus decomposition

(Φ ◦Ψ) (X ) = Φ

�

M
∑

m=1

BmX B∗m

�

=
∑

m,n

AnBmX (AnBm)
∗,

where Ψ(X ) =
∑M

m=1 BmX B∗m for X ∈ B(K1), Bm ∈ B(K1,K2) and Φ(Z) =
∑N

n=1 AnZA∗n for
Z ∈ B(H1), An ∈ B(H1,H2) are Kraus decompositions of Ψ and Φ respectively.

Furthermore, Φ⊗Ψ : B(H1⊗K1)→ B(H2⊗K2) is completely positive since

Φ⊗Ψ =
�

Φ⊗ IdB(K2)

�

◦
�

IdB(H1)⊗Ψ
�

.

Example 3.14. For integers k < n, the map

Φ: Mn −→ Mn

X 7→ k Tr(X ) I − X

is k-positive but not (k+ 1)-positive.
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First we show that Φ is not (k + 1)-positive by evaluating Φ⊗ Id: Mn⊗Mk+1 → Mn⊗Mk+1

on |ψ〉〈ψ| for ψ=
∑k+1

i=1 |i〉 ⊗ |i〉 ∈ C
n⊗Ck+1. We compute

�

Φ⊗ IdMk+1

�

(|ψ〉〈ψ|) =

(Φ⊗ Id)

 

k+1
∑

i, j=1

|i〉 〈 j| ⊗ |i〉 〈 j|

!

=

k+1
∑

i, j=1

Φ (|i〉 〈 j|)⊗ |i〉 〈 j| =

k+1
∑

i=1

Φ (|i〉 〈i|)⊗ |i〉 〈i|+
∑

i 6= j

Φ (|i〉 〈 j|)⊗ |i〉 〈 j| =

k+1
∑

i=1

(kIn − |i〉 〈i|)⊗ |i〉 〈i| −
∑

i 6= j

|i〉 〈 j| ⊗ |i〉 〈 j| =: Θ ∈Mn⊗Mk+1,

which is not positive semidefinite since
¬

∑k+1
i=1 i ⊗ i

�

�

�Θ
�

�

�

∑k+1
i=1 i ⊗ i

¶

= (k− (k+ 1)) (k+ 1)< 0.

On the other hand, the spectral theorem implies that Φ is k-positive if and only if the matrix
�

Φ⊗ IdMk

�

(|ψ〉〈ψ|) is positive semidefinite for allψ ∈ Cn⊗Ck. We can write anyψ in the form

ψ=
∑k

i=1χi ⊗ϕi , where {ϕi} is an orthonormal basis of Ck. Then,

�

Φ⊗ IdMk

�

(|ψ〉〈ψ|)≥
∑

i< j

�

�χi ⊗ϕi −χ j ⊗ϕ j

�


χi ⊗ϕi −χ j ⊗ϕ j

�

�≥ 0.

3.1.3 Quantum channels

In this subsection we introduce quantum channels, a fundamental family of superoperators in
quantum information theory.

We say that a self-adjointness-preserving map Φ: B(H1)→ B(H2) is unital if Φ(IH1
) = IH2

;
and it is trace preserving if TrΦ(X ) = Tr X for all X ∈ B(H1).

Lemma 3.15. A self-adjointness-preserving map Φ: B(H1) → B(H2) is unital if and only if
Φ∗ : B(H2)→ B(H1) is trace preserving.

Proof. If Φ is unital and Y ∈ B(H2), we have

Tr Y = 〈Y ∗, IH2
〉HS = 〈Y ∗,Φ(IH1

)〉HS = 〈Φ∗(Y ∗), IH1
〉HS = TrΦ∗(Y ),

where the last equality follows from Lemma 3.8, 2. On the other hand, if Φ∗ is trace preserving,
it holds

〈Y ∗, IH2
〉HS = Tr Y = TrΦ∗(Y ) = 〈Y ∗,Φ(IH1

)〉HS

for each Y ∈ B(H2), which implies Φ(IH1
) = IH2

.

Definition 3.16. A quantum channel Φ: B(H1) → B(H2) is a completely positive and trace
preserving map; thus a quantum channel is also called a CPTP map. A unital quantum channel
is called doubly stochastic or bistochastic.
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In quantum information theory Φ is representing some physical process where it is natural
to expect that states are mapped to states. This is the reason why quantum channels are by
definition positivity preserving and trace preserving. The reason for the "complete" positivity
assumption is slightly more subtle and will be addressed in Remark 3.20. Note that if a quantum
channel Φ is additionally unital (i.e., bistochastic), then both Φ and Φ∗ are quantum channels,
in which case it must hold dimH1 = dimH2.

Lemma 3.17. For a map Φ: B(H1) → B(H2) with Kraus decomposition (3.5), the following
equivalences hold:

1. The condition
∑N

n=1 AnA∗n = IH2
is equivalent to Φ being unital.

2. The condition
∑N

n=1 A∗nAn = IH1
is equivalent to Φ being trace preserving.

Proof. The first equivalence is obtained directly from the Kraus decomposition of Φ:

Φ(IH1
) =

N
∑

n=1

An IH1
A∗n =

N
∑

n=1

AnA∗n = IH2
.

By linearity of Φ and the spectral theorem it is enough to show that the second condition is
equivalent to TrΦ(X ) = Tr X for X = |ξ〉〈ξ|. This is true, since the argument

Tr (|ξ〉〈ξ|) = Tr

�

N
∑

n=1

A∗nAn |ξ〉〈ξ|

�

= Tr

�

N
∑

n=1

An |ξ〉〈ξ|A∗n

�

holds both ways for any ξ ∈H1.

Now we state another fundamental representation theorem describing the structure of quan-
tum maps.

Theorem 3.18 (Stinespring theorem). For a completely positive map Φ: B(H1)→ B(H2) there
exists a Hilbert space E of dimE≤ dimH1 dimH2 and an embedding V : H1→H2⊗E for which
it holds,

Φ(X ) = TrE V X V ∗ for any X ∈ B(H1).

Moreover, if Φ is a quantum channel, then the embedding V is an isometry. Conversely, an isometric
embedding V induces the map X 7→ TrE V X V ∗ that is a quantum channel.

Proof. By Choi’s theorem 3.9, we can assign to Φ a Kraus decomposition with the Kraus rank
N ≤ dimH1 dimH2. Define E= CN and

V : H1 −→ H2⊗E

|ξ〉 7→
N
∑

i=1

Ai |ξ〉 ⊗ |i〉 for ξ ∈H1 .

Then, for any X ∈ B(H1), it holds

V X V ∗ =
N
∑

i, j=1

AiXA j ⊗ |i〉〈 j| ,

which proves the first statement of the theorem. (This follows by linearity from operators of the
form X = |ξ〉〈ξ|, like in the proof of Lemma 3.17). From evaluating V on an orthonormal basis
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we get V ∗V =
∑N

i=1 A∗i Ai . Then by Lemma 3.17 it holds V ∗V = IH1
if and only if Φ is a quantum

channel; this means that V is an isometry. On the other hand, the map X 7→ TrE V X V ∗ induced
by an isometric embedding V is a quantum channel. Indeed, it is completely positive by Choi’s
theorem 3.9 (repeat the easy step 3.=⇒ 1. in the proof) and it is trace preserving since V is an
isometry (i.e., V ∗V = IH1

).

When H1 = H2, the Stinespring theorem is even more descriptive: any quantum channel
can be "lifted" to a unitary transformation acting on a larger composite system (by using some
auxiliary Hilbert space).

Corollary 3.19. For a quantum channelΦ: B(H)→ B(H) there exists a finite-dimensional Hilbert
space E, a unit vector η ∈ E and a unitary transformation U on H⊗E such that for any X ∈ B(H)
it holds,

Φ(X ) = TrE U (X ⊗ |η〉〈η|)U∗. (3.6)

Proof. Let E be the finite dimensional space and V : H→H⊗E the isomorphism given by the
Stinespring theorem 3.18. Select any unit vector η ∈ E and on the subspace H⊗η ⊂ H⊗E
define the following isometry

Uη : H⊗η −→ H⊗E
ξ⊗η 7→ V (ξ).

Then Uη can be extended to a unitary on H⊗E. As before, by linearity it suffices to check (3.6)
for X = |ξ〉〈ξ|,

Φ(X ) = TrE V |ξ〉〈ξ|V ∗ = TrE U |ξ⊗η〉〈ξ⊗η|U∗ = TrE U (X ⊗ |η〉〈η|)U∗.

Remark 3.20 (Complete positivity of quantum channels). First we give a mathematical mo-
tivation of complete positivity that will follow from Proposition 3.39 in the next Section 3.2.
Namely, completely positive maps characterise automorphisms of the PSD cone. Consequently,
completely positive maps can be seen as generalizations of unitaries in Kadison’s theorem 2.8.

Next we give the motivation behind complete positivity that is usually found in physics
textbooks. A quantum evolution map (or a quantum operation) Φ: B(H)→ B(H)maps density
matrices to density matrices. When Φ is linear, this assumption is equivalent to the map being
positive and trace preserving. When Φ is extended with an identity on the environment E, then
Φ⊗ IdB(E) : B(H⊗E)→ B(H⊗E) is also required to be a quantum operation, thus it should be
positive. If dimH ≤ dimE, this is equivalent to complete positivity of Φ by Choi’s theorem 3.9
and Corollary 3.11.

Finally we present a more elaborate motivation for complete positivity that is phisically
more natural, since it relates to unitary (time) evolutions (see Subsection 2.1.2) of a composite
system H⊗E. Our aim is to describe the evolution of an initial H-marginal σ 7→ Φ(σ) (i.e.,
σ is the initial state of subsystem H and Φ(σ) is its terminal state) in terms of a CPTP map Φ
acting on B(H). Assume first that a unitary U is acting on the global space H⊗E and it is of
the form U = V ⊗W , where V and W are unitary operators on H and E respectively. Moreover,
assume that ψ = ξ ⊗ η is a product state vector. Then, the evolution of the subsystem H is
the action σ 7→ VσV ∗, where σ = TrE (|ψ〉〈ψ|) = |ξ〉〈ξ| and VσV ∗ = TrE (U |ψ〉〈ψ|U∗) (see
Subsection 2.2.2 for the definition of the partial trace). In the language of state vectors this
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evolution of the subsystem H is given by ξ 7→ Vξ. On the other hand, when U is not a product
of two unitaries, the terminalH-marginal of an initial pure separable state may be a mixed state,
as discussed in (2.15). Therefore, we need to generalize the above product unitary evolution
ξ⊗ η 7→ U(ξ⊗ η) of H⊗E and its "shadow" evolution ξ 7→ Vξ of H. In order to achieve this,
for a given unitary U acting on H⊗E, we fix an η ∈ E and define the isometry

V : H −→ H⊗E
ξ 7→ U(ξ⊗η).

Then the evolution of the H-marginal is by Stinespring’s theorem 3.18 equal to

σ = |ξ〉〈ξ| 7→ TrE VσV ∗.

In a specified orthonormal basis {ϑi} of E, there exist operators Ai ∈ B(H) such that V can be
represented as Vξ=

∑

i(Aiξ)⊗ ϑi . This implies

VσV ∗ =
∑

i, j

�

Ai |ξ〉〈ξ|A∗j
�

⊗
�

�ϑi

�


ϑ j

�

� ,

and moreover
TrE VσV ∗ =

∑

i, j

�

Ai |ξ〉〈ξ|A∗j
�

Tr
�

�ϑi

�


ϑ j

�

�=
∑

i

Ai |ξ〉〈ξ|A∗i .

Thus we found a description of the evolution of the subsystem H which is intrinsic to H,

Φ: σ 7→
∑

i

AiσA∗i ,

and by Choi’s theorem 3.9 it corresponds to a completely positive map on B(H). Furthermore,
since ξ 7→ Vξ=

∑

i(Aiξ)⊗ ϑi is an isometry, it holds

〈ξ|ξ〉= 〈Vξ|Vξ〉=
∑

i, j




Aiξ
�

�A jξ
� 


ϑi

�

�ϑ j

�

=
∑

i

〈Aiξ|Aiξ〉= 〈ξ|
∑

i

A∗i Ai |ξ〉

for all ξ ∈ H. This proves that V is an isometry if and only if
∑

i A∗i Ai = IH, which is by
Lemma 3.17 equivalent to Φ being trace preserving.

In the next examples we list the most common and important families of quantum channels
and superoperators. We explain their properties and their relevance in quantum information
theory. (If convenient, we will omit the trace preserving condition.)

Example 3.21 (Unitary channels). Unitary channels are the completely positive isometries of
the set of states D(Cd) ⊂ B(Cd) of the form ρ 7→ UρU∗ for some unitary U ∈ U(d). Recall
that we identified these maps in Kadison’s theorem 2.8, they are the affine maps that globally
preserve D(Cd).

Example 3.22 (Mixed-unitary channels). A quantum channel Φ: B(Cd) → B(Cd) which is a
convex combination of unitary channels is a mixed-unitary channel. In other words, Φ is of the
form

Φ(ρ) =
N
∑

i=1

λi UiρU∗i ,

where Ui ∈ U(d) and λi ≥ 0 such that
∑N

i=1λi = 1. It follows directly from the definition that
mixed-unitary channels are unital. For d = 2 the converse implication is also true.
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Proposition 3.23. A unital quantum channel Φ: B(C2)→ B(C2) is a mixed-unitary channel.

Proof. We break the proof into three parts. (i) We claim that it is enough to prove the proposition
for channels that are diagonal with respect to the basis of Pauly matrices (2.1). As explained
on page 14, ρ ∈Msa

2 is a state if and only if it is of the form

ρ =
1
2

I + ax ·
1
p

2
σx + ay ·

1
p

2
σy + az ·

1
p

2
σz with a2

x + a2
y + a2

z ≤
1
2

.

Since Φ is unital, it preserves the center of the Bloch ball. Then Φ(ρ) is the state

Φ(ρ) =
1
2

I + ax ·
1
p

2
Φ(σx) + ay ·

1
p

2
Φ(σy) + az ·

1
p

2
Φ(σz)

with

Φ(σx) = ϕx xσx +ϕy xσy +ϕzxσz

Φ(σy) = ϕx yσx +ϕy yσy +ϕz yσz

Φ(σz) = ϕxzσx +ϕyzσy +ϕzzσz

defining a contraction in the basis of Pauli matrices




ϕx x ϕx y ϕxz

ϕy x ϕy y ϕyz

ϕzx ϕz y ϕzz



 , (3.7)

or equivalently, a contraction of the Bloch ball. Therefore we can diagonalize Φ (i.e., Φ(I) = I ,
Φ(σx) = aσx , Φ(σy) = bσy , Φ(σz) = cσz for some a, b, c ∈ R) by composing it with the map
X 7→ UX U∗ for U ∈ U(2), where U corresponds to the rotation of the Bloch sphere, which is
induced by the contraction in (3.7) with eigenvalues a, b, c.
(ii) Next we define a superoperator on B(C2) that is unital and acts diagonally on Pauli matrices.
For

Φ=
1
2

�

|I〉〈I |+ a |σx〉〈σx |+ b
�

�σy

�


σy

�

�+ c |σz〉〈σz |
�

we can show that it is completely positive if and only if (a + b)2 ≤ (1 + c)2 and (a − b)2 ≤
(1 − c)2. Indeed, we explicitly write the Choi matrix (3.2) and use Choi’s theorem 3.9. It is
straightforward to verify that

C(Φ) =
1
2







1+ c 0 0 a+ b
0 1− c a− b 0
0 a− b 1− c 0

a+ b 0 0 1+ c







is positive semi-definite if and only a, b, c satisfy the above inequalities.
(iii) Finally, observe that

�

(a, b, c) ∈ R3 : (a+ b)2 ≤ (1+ c)2 and (a− b)2 ≤ (1− c)2
	

=

conv {(1, 1,1), (1,−1,−1), (−1,1,−1), (−1,−1, 1)} =
¦

λ1(1,1, 1) +λ2(1,−1,−1) +λ3(−1, 1,−1) +λ4(−1,−1,1): λi ≥ 0 and
∑

λi = 1
©

.
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This implies that Φ acts on X = hI I + hxσx + hyσy + hzσz as

Φ(X ) = hI I + hx aσx + hy bσy + hzcσz

= hI I + hx(λ1+λ2−λ3−λ4)σx + hy(λ1−λ2+λ3−λ4)σy + hz(λ1−λ2−λ3+λ4)σz

= λ1X +λ2(hI I+hxσx−hyσy−hzσz)

+λ3(hI I−hxσx+hyσy−hzσz) +λ4(hI I−hxσx−hyσy+hzσz)

= λ1 X +λ2σx Xσx +λ3σy Xσy +λ4σzXσz ,

which concludes the proof thatΦ is mixed-unitary with U1 = I , U2 = σx , U3 = σy , U4 = σz .

Example 3.24 (Depolarizing and dephasing channels). The completely depolarizing channel is
by definition

R: B(Cd) −→ B(Cd)

X 7→
1
d

Tr X I .

Since R maps every state to a maximally mixed state, it is also called the completely randomizing
channel. A depolarizing channel is a quantum channel in the family Rλ = λI + (1 − λ)R for
− 1

d2−1 ≤ λ ≤ 1. The completely dephasing channel D : B(Cd)→ B(Cd) maps any operator (in a
specified basis) into its diagonal part.

The following lemma connects depolarizing channels with the isotropic states defined in
Example 2.21.

Lemma 3.25. The Choi matrix of the depolarizing channel Rλ is dρλ, where ρλ is the isotropic
state.

Proof. The proof will follow from the Choi matrix written in the form (3.4). We get C(Rλ) =
�

Rλ ⊗ IdB(Cd )

�

(|χ〉〈χ|) , where |χ〉=
∑

i |ii〉 ∈ C
d ⊗Cd . Then,

C(Rλ) =
�

Rλ ⊗ IdB(Cd )

�

 

∑

i, j

|i〉〈 j| ⊗ |i〉〈 j|

!

= λ
∑

i, j

|i〉〈 j| ⊗ |i〉〈 j|+
1−λ

d

∑

i

I2 ⊗ |i〉〈i|

= λ |χ〉〈χ|+ (1−λ)
1
d

∑

i

I4,

which is an isotropic state (defined in Example 2.21) on Cd ⊗Cd multiplied by d.

Example 3.26 (Quantum-classical and classical-quantum channels). Recall the definition of
POVMs (positive operator-valued measures) in Remark 2.7. A POVM on H is a finite family of
positive semidefinite operators {Mi} with the property

∑N
i=1 Mi = IH. For a given POVM we

define its quantum-classical channel (or q-c channel) by

Φ: B(H) −→ B(CN )

ρ 7→
N
∑

i=1

Tr(Miρ) |i〉〈i| .
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Its dual concept is a classical-quantum channel (or c-q channel), defined for a finite family of
states ρi on H,

Ψ : B(CN ) −→ B(H)

ρ 7→
N
∑

i=1

ρi 〈i|ρ|i〉 .

The next lemma explicitly assigns a c-q channel to a unital q-c channel.

Lemma 3.27. Let Φ be a q-c channel associated to a POVM {Mi}. When Tr Mi = 1 for all i, the
q-c channel Φ is unital. The dual of a unital q-c channel is a c-q channel.

Proof. The condition Tr Mi = 1 implies Φ(IH) =
∑N

i=1 Tr(Mi) |i〉〈i| = IN , and in particular
dimH = N . From the definition of the dual superoperator Φ∗,

〈ρCN ,Φ(ρH)〉HS = 〈Φ∗(ρCN ),ρH〉HS,

for ρCN ∈ B(CN ) and ρH ∈ B(H), we can directly compute Φ∗(ρCN ) =
∑N

i=1 Mi 〈i|ρCN |i〉.

Example 3.28 (Entanglement breaking maps). A completely positive map Φ ∈ CP(Hin,Hout)
is entanglement breaking if, for any d ∈ N and any positive operator X ∈ Bsa(Hin⊗Cd), the
operator

�

Φ⊗ IdMd

�

(X ) ∈ SEP(Hout⊗Cd)

is in the cone of separable operators (2.10). In review, the definition involves the following
operators:

completely positive Φ: B(Hin) −→ B(Hout),

positive X : Hin⊗Cd −→ Hin⊗Cd ,

separable
�

Φ⊗ IdMd

�

(X ): Hout⊗Cd −→ Hout⊗Cd .

The following lemma characterizes entanglement breaking maps.

Lemma 3.29. For a completely positive map Φ: B(Hin)→ B(Hout) the following descriptions are
equivalent:

1. Φ is an entanglement breaking map.

2. The Choi matrix C(Φ) is a separable operator on Hout⊗Hin.

3. All the operators in the Kraus decomposition of Φ have rank 1.

Proof. The implication 1.=⇒ 2. follows from the form (3.4) of the Choi matrix. In a fixed basis
{ei} of Hin it holds C(Φ) =

�

Φ⊗ IdB(Hin)

�

(|χ〉〈χ|) , where χ =
∑

i ei ⊗ ei ∈ Hin⊗Hin. If we
identify Hin with Cd in the definition of an entanglement breaking map, it follows immediately
that C(Φ) lies in the separable cone SEP

�

Hout⊗Hin
�

. For the implication 2. =⇒ 3. we write
C(Φ) =

∑

|x i ⊗ yi〉〈x i ⊗ yi | for some x i ∈ Hout and yi ∈ Hin; then we repeat the proof of the
analogous implication in Choi’s theorem 3.9. The final implication 3. =⇒ 1. is obtained from
the following fact: for a rank one operator Gi =

�

�gout
�


g in
�

� ∈ B
�

Hin,Hout
�

, we define

Bi =
�

�g in
�


g in
�

� ∈ B
�

Hin
�

and Ai =
�

�gout
�


gout
�

� ∈ B
�

Hout
�

,
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and verify that for any Y ∈ B(Hin),

GiY G∗i =
�

�gout
�


g in
�

�Y
�

�g in
�


gout
�

�= Tr
��

�g in
�


g in
�

�Y
� �

�gout
�


gout
�

�= Tr(BiY )Ai .

Consequently, for any positive operator X ∈ Bsa(Hin⊗Cd) it holds that

�

Φ⊗ IdMd

�

(X ) =
∑

i

Ai ⊗ TrHin

��

B1/2
i ⊗ I

�

X
�

B1/2
i ⊗ I

��

is a separable operator in the separable cone SEP(Hout⊗Cd).

Entanglement breaking quantum channels are sometimes called super-positive maps. The
proofs in Lemma 3.27 and Lemma 3.29 show that a quantum channel is entanglement breaking
if and only if it can be written as the composition of a q-c channel with a c-q channel. For this
reason, entanglement breaking quantum channels are also called q-c-q channels.

Let Φ,Ψ be completely positive maps and let Φ be entanglement breaking. We can write
Φ ⊗ Ψ = (Id⊗Ψ) ◦ (Φ ⊗ Id), and use the fact that the product superoperator Id⊗Ψ maps the
separable cone to the separable cone. This proves the next corollary.

Corollary 3.30 (Once broken, always broken). If one of the two completely positive maps Φ,Ψ
is entanglement breaking, then (Φ⊗Ψ)(X ) ∈ SEP for any positive operator X .

We conclude the survey of entanglement breaking maps with an open problem.

Conjecture 3.31 (Christandl’s conjecture). A superoperator Φ: Md → Md is by definition co-
completely positive (or co-cp) if Φ composed with the transposition T is completely positive.
In 2012 Matthias Christandl conjectured that Φ being completely positive and co-completely
positive implies that Φ ◦ Φ is entanglement breaking. Only recently some progress has been
made in proving the conjecture [CMHW19], in particular the conjecture holds for d = 3.

Example 3.32 (PPT-inducing maps). A completely positive map Φ ∈ CP(Hin,Hout) is called
PPT-inducing if, for any d ∈ N and any positive operator X ∈ Bsa(Hin⊗Cd), the operator

�

Φ⊗ IdMd

�

(X ) has positive partial transpose.

In the next lemma we give a characterization of PPT-inducing maps in terms of the Choi
matrix. Recall Definition 2.29 of the partial transposition Γ and Remark 3.3, stating the relation
between the Choi and the Jamiołkowski isomorphisms, C = Γ ◦ J .

Lemma 3.33. A completely positive map Φ is PPT-inducing if and only if J(Φ) = C(Φ)Γ is positive
semidefinite.

Proof. If Φ is PPT-inducing, the positive semidefiniteness of C(Φ)Γ follows directly from (3.4).
Conversely, if C(Φ)Γ is positive semidefinite, it is by the spectral theorem enough to verify that
�

Φ⊗ IdMd

�

(|ψ〉〈ψ|) has a positive partial transpose for every ψ ∈ Hin⊗Cd . We connect ψ to
the basis of the Choi matrix as follows: there exists B ∈ B(Hin,Cd) such that ψ = (I ⊗ B)χ,
where χ =

∑

ei ⊗ ei ∈Hin⊗Hin. This implies that
�

Φ⊗ IdMd

�

(|ψ〉〈ψ|) =
�

Φ⊗ IdMd

�

((I ⊗ B) |χ〉〈χ| (I ⊗ B∗)) = (I ⊗ B)C(Φ)(I ⊗ B∗)

has a positive partial transpose (in the last equality we used (3.4) to obtain the Choi matrix
C(Φ)).
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The next families of quantum channels are characterized by their particular Kraus decom-
positions.

Example 3.34 (Schur channels). The Schur product A� B of two same-dimensional matrices
A=

�

Ai j

�d

i, j=1 , B =
�

Bi j

�d

i, j=1 ∈Md is defined by componentwise multiplication (A�B)i j = Ai jBi j .
Then, for any given matrix A∈Md , the induced map

ΘA : Md −→ Md

X 7→ A� X

is called a Schur multiplier. When A is positive semidefinite and Aii = 1 for i = 1, . . . , d, the
corresponding Schur multiplier ΘA is a quantum channel called a Schur channel.

We remark that A�B can be seen as a submatrix in A⊗B. From this it can be shown that if A
and B are being positive semidefinite, then also A� B is positive semidefinite. Additionally, we
can write ΘA⊗ IdMk

= ΘA⊗J , where J is the k× k matrix of ones. This shows that the following
statements are equivalent (and consequently Schur channels are well defined):

1. A is a positive semidefinite matrix,

2. ΘA is positive,

3. ΘA is completely positive.

Alternatively, Schur channels can be defined as quantum channels with diagonal operators in
their Kraus decomposition (3.5).

Lemma 3.35. A quantum channel Φ: Md → Md is a Schur operator if and only if it admits a
Kraus decomposition with diagonal operators.

Proof. The lemma follows from the next observations. Given an a ∈ Cd , define the diagonal
matrix Da with a’s entries along the diagonal. Then A= |a〉〈a| defines a completely positive ΘA.
Moreover, for all X ∈Md the following equality holds DaX D∗a = Θ|a〉〈a|(X ).

Example 3.36 (Separable superoperators). Let now Hin = Hin
1 ⊗H

in
2 and Hout = Hout

1 ⊗H
out
2

be bipartite Hilbert spaces. A map Φ ∈ CP(Hin,Hout) is said to be separable if it admits a Kraus
decomposition consisting of product operators. This means, there exist A1,i : Hin

1 → Hout
1 and

A2,i : Hin
2 →Hout

2 such that for all X ∈ B(Hin),

Φ(X ) =
N
∑

i=1

�

A1,i ⊗ A2,i

�

X
�

A1,i ⊗ A2,i

�∗
.

For the sake of completeness we name another important class of separable operators called
the LOCC channels (Local Operations and Classical Communication). We will not define the
LOCC channels in this thesis, we only mention that they are placed between the separable and
product channels:

conv {product channels} ⊂ {LOCC channels} ⊂ {separable channels}.

The LOCC channels are connected to the famous distillability problem, one of the most im-
portant open problems connected to entanglement. For more on the distillability problem and
other properties of the LOCC family see [AS17, Section 12.2].
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Example 3.37 (Direct sums). It is also possible to construct quantum channels on direct sums
of Hilbert spaces. Let Φ1 : B(Hin

1 ) → B(Hout
1 ) and Φ2 : B(Hin

2 ) → B(Hout
2 ) be two quantum

channels. Their direct sum is the quantum channel defined on the block operators as

Φ1 ⊕Φ2 : B(Hin
1 ⊕H

in
2 ) −→ B(Hout

1 ⊕H
out
2 )

�

X11 X12

X21 X22

�

7→
�

Φ1(X11) 0
0 Φ2(X22)

�

.

A straightforward calculation shows that, if
�

A1,i

	

and
�

A2,i

	

are the Kraus operators corre-
sponding to the Kraus decompositions of Φ1 and Φ2 respectively, then

�

A1,i ⊗ I
	

∪
�

I ⊗ A2,i

	

are the Kraus operators for Φ1 ⊕Φ2.

3.2 Cones of QIT

In this section we give a summary of the cones and their bases considered in Chapters 2 and 3.
Moreover, we construct an inclusion hierarchy of the relevant cones. We will denote a generic
cone of operators by C and a generic cone of superoperators by C . To each cone of superoper-
ators C we will associate the cone of operators C, which consists of the Choi matrices of maps
in C .

3.2.1 Cones of operators

Given a Hilbert space H, a cone of operators C lies in the real vector space Bsa(H) of self-adjoint
operators. For the vector defining the base of C in (2.7) we always select e = ρ∗ = 1

dimH I ,
the maximally mixed state (2.5). Recall that the notion of separability and the PPT property
(considered in Section 2.2 and Section 2.3 respectively) are defined on bipartite spaces with
respect to a fixed partition H =H1⊗H2.

The fundamental cone in this thesis is the PSD cone of positive semidefinite matrices, where
its associated base D is the convex set of states (see Subsection 2.1.3 and Figure 2.1). We define
the cone of co-PSD states by

co-PSD := Γ (PSD) =
�

ρ ∈ Bsa(H): ρΓ ∈ PSD
	

, (3.8)

where Γ is the partial transposition from Definition 2.29. By the the PPT criterion in Proposi-
tion 2.34 we have,

SEP ⊂ PPT= D∩ Γ (D),

as illustrated on Figure 2.5. The convex set of separable states SEP gives rise to (after dropping
the trace one constraint) the separable cone SEP. Analogously, the convex set of states with
positive partial transpose PPT is the base of the PPT cone. Then, on the level of cones, we can
write

SEP ⊂ PPT = co-PSD∩PSD . (3.9)

In quantum computation it is standard to take H = Cm⊗Cn with the computational basis
{|i j〉}, and represent the operators in Bsa(H) as block matrices of the form M =

�

Mi j

�m

i, j=1,
where Mi j ∈Mn (as explained in (1.2)).
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For the sake of completeness we define the cone of block-positive matrices BP. We say that
a block matrix M =

�

Mi j

�m

i, j=1 is block-positive if

m
∑

i, j=1

ξiξ j Mi j ∈ PSD(Cn) (3.10)

for all ξ = (ξ1, . . . ,ξm) ∈ Cm. The extreme points of the convex set SEP are generated by pure
separable states |ξ⊗η〉〈ξ⊗η| (see the discussion after Definition 2.16). After dropping the
trace constraint, we can view |ξ⊗η〉〈ξ⊗η| as the extreme rays of the SEP cone. This implies
that,

M ∈ SEP∗

⇐⇒
Tr (M |ξ⊗η〉〈ξ⊗η|)≥ 0 for all ξ ∈ Cm and all η ∈ Cn (3.11)

⇐⇒
the block matrix M is block-positive,

where ∗ stands for the dual cone (2.6) and the last equivalence follows from

〈ξ⊗η|M |ξ⊗η〉= 〈η|
m
∑

i, j=1

ξiξ j Mi j |η〉 .

Thus we proved SEP∗ = BP. Since PSD and co-PSD are both self-dual cones, inclusion (3.9)
can be rephrased as

PPT∗ = co-PSD+PSD ⊂BP. (3.12)

We summarize the relations among the cones in Bsa(H1⊗H2) in Table 3.1. (A bird’s-eye
view of the inclusions SEP (Cm⊗Cn) ⊂ PSD (Cm⊗Cn) ⊂ BP (Cm⊗Cn) in Bsa (Cm⊗Cn) is
illustrated in Figure 3.1.)

cone C base Cb dual cone C∗

block positive BP BP SEP

decomposable co-PSD+PSD conv (D∪Γ (D)) PPT

positive PSD D PSD

PPT PPT PPT co-PSD+PSD
separable SEP SEP BP

Table 3.1. The cones of operators: each cone is included in the cones above it, and each
dual cone is included in the dual cones below it.

3.2.2 Cones of superoperators

On the level of superoperators, we consider self-adjointness-preserving maps in Subsection 3.1.3
acting from Bsa(H) to Bsa(K). The corresponding cones C (H,K) lie in the real vector space
B (Bsa(H), Bsa(K)); we denote the cones as C (H) when H =K, or simply by C when there is
no ambiguity about the underlying Hilbert spaces.
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Recall Definition 3.1 of a positive or positivity preserving linear map Φ: B(H)→ B(K). In
the language of operator cones, Φ is positivity preserving if Φ(PSD(H)) ⊂ PSD(K). Obviously,
the set of positivity preserving linear maps is a cone in B (B(H), B(K)), which we denote by
P(H,K). On page 38 we showed that Φ: B(H)→ B(K) is positivity preserving if and only if
its adjoint Φ∗ : B(K)→ B(H) is positivity preserving. In the language of superoperator cones,
Φ ∈ P(H,K) if and only if Φ∗ ∈ P(K,H). However, from this it would be wrong to conclude
that P is a self-dual cone.

The most fundamental cone of superoperators in quantum information theory is the CP
cone of completely positive maps, giving rise to quantum channels (see Definition 3.1 and
Definition 3.16). In Choi’s theorem 3.9 we proved that Φ: Msa

m → Msa
n is completely positive if

and only if its Choi Matrix C(Φ): Cn⊗Cm→ Cn⊗Cm is positive semidefinite. In the language
of cones, Φ ∈ CP(Cm,Cn) if and only if C(Φ) ∈ PSD(Cn⊗Cm). This leads to the following
lemma.

Lemma 3.38. The completely positive cone CP is self-dual.

Proof. Self-duality of the CP cone will follow from

CP(Cn,Cm) =
�

Ψ ∈ B
�

Msa
n , Msa

m

�

: Tr (Φ ◦Ψ)≥ 0 for all Φ ∈ CP(Cm,Cn)
	

,

where Tr denotes the trace on B
�

Msa
n

�

. By Lemma 3.5, the matrix representations of super-
operators Φ ∈ B

�

Msa
m ,Msa

n

�

,Ψ ∈ B
�

Msa
n , Msa

m

�

with respect to the standard bases are equal to
C(Φ)R, C(Ψ)R respectively, where R is the realignment. This implies that

Tr (Φ ◦Ψ) = Tr (C(Φ) FC(Ψ)F∗) ,

where F : Cm⊗Cn → Cn⊗Cm is the flip operator from Example 2.22. The statement follows
from the self-duality of the PSD cone.

Recall the ntanglement breaking maps from Example 3.28. The Choi isomorphism Φ 7→
C(Φ) and Lemma 3.29 induce the association between the cone of entanglement breaking maps,

EB (Cm,Cn) =
�

Φ ∈ B
�

Msa
m ,Msa

n

�

: Φ is entanglement breaking
	

and the separable cone SEP(Cn⊗Cm).
Similarly, it follows from Lemma 3.33 that the Choi isomorphism relates

PPT (Cm,Cn) =
�

Φ ∈ B
�

Msa
m , Msa

n

�

: Φ is PPT-inducing
	

,

the cone of PPT-inducing maps in Example 3.32, to the PPT(Cn⊗Cm) cone.
For the sake of completeness we relate the cone of decomposable maps DEC (Cm,Cn) to

the cone of decomposable matrices in the following way. As stated in Conjecture 3.31, a map
Φ: Msa

m →Msa
n is by definition co-completely positive if T ◦Φ ∈ CP (Cm,Cn). Moreover, Φ is said

to be decomposable if it can be written as a sum of a completely positive and a co-completely
positive map. It follows that the correspondence Φ 7→ C(Φ) associates the cone DEC (Cm,Cn)
of decomposable maps with the co-PSD+PSD cone considered in (3.9) and (3.12). In other
words, the Choi matrix of a decomposable map can be written as a sum of a positive semidef-
inite and a co-positive semidefinite matrix. This follows from Choi’s theorem 3.9 and from
Remark 3.3,

C(T ◦Φ) = C(Φ)Γ .
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Finally, we use the Choi isomorphism Φ 7→ C(Φ) to identify the cone of positivity preserving
maps P (Cm,Cn) with SEP∗(Cn⊗Cm) = BP(Cn⊗Cm). This follows from the equivalences in
(3.10) and (3.11). Indeed, by (3.3), the alternative Choi matrix is C̃(Φ) =

�

Mi j

�

for Mi j =
Φ(
�

�ei

�


e j

�

�); furthermore for any ξ = (ξ1, . . . ,ξm) ∈ Cm it holds Φ(|ξ〉〈ξ|) =
∑m

i, j=1 ξiξ j Mi j .
Consequently,

C̃(Φ) ∈ SEP∗(Cm⊗Cn)

⇐⇒
Φ (|ξ〉〈ξ|) ∈ PSD(Cn) for all ξ ∈ Cm (3.13)

⇐⇒
Φ ∈ P(Cm,Cn).

In Table 3.2 we summarize the above relations between a cone of superoperators C and the
associated cone of operators C, consisting of the Choi matrices of elements in C .

cone C cone C

positivity preserving P BP

decomposable DEC co-PSD+PSD
completely positive CP PSD

PPT-inducing PPT PPT

entanglement breaking EB SEP

Table 3.2. The cones of superoperators: Φ ∈ C ⇐⇒ C(Φ) ∈ C.

We conclude the study of the positive semidefinite cone PSD(H) ⊂ Bsa(H) with a "cone
version" of Kadison’s theorem 2.8 (stating that unitaries are the only affine maps preserving
the set of states D(H) = PSDb(H)). A fundamental consequence is that automorphisms of the
PSD cone must be either completely positive or co-completely positive.

Proposition 3.39 (Characterization of automorphisms of the PSD cone, [AS17]:Prop. 2.29).
Let Φ: Msa

n → Msa
n be an affine map which satisfies Φ(PSD(Cn)) = PSD(Cn). Then Φ is a linear

automorphisms of PSD(Cn) and is of one of the two possible forms: Φ(ρ) = VρV ∗ or Φ(ρ) =
VρT V ∗ for some V ∈ GL(n,C). In the first case Φ is completely positive, whereas in the second
case Φ is co-completely positive.

Without proof (for which we would need to use Brouwer’s fixed-point theorem) we give a
generalization of Proposition 3.39, when Φ is not assumed to be an automorphism of the PSD

cone but is only positivity preserving. Proposition 3.40 characterizes how close a positivity
preserving map is to being both unital and trace preserving (see Subsection 3.1.3 for its relation
with quantum channels).

Proposition 3.40 (Sinkhorn’s normal form for positive maps, [AS17]: Prop. 2.32). Consider a
linear map Φ: Msa

m →Msa
n which is in the interior of the cone of positivity preserving maps P. Then

there exist positive operators A∈ PSD(Cn) and B ∈ PSD(Cm) such that the map

Φ̃(ρ) = AΦ(BρB)A

is trace preserving and maps the maximally mixed state to maximally mixed state (i.e., is unital).
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3.3 Entanglement witnesses

This section is devoted to detecting entanglement. We will introduce the concept of entangle-
ment witnesses which detect states that are not separable.

In order to do this, we employ the relations between the cones of operators and superop-
erators considered in Subsections 3.2.1 and 3.2.2. Equivalence (3.11) yields the identification
between the dual cone SEP∗ and BP. Furthermore, equivalence (3.13) identifies SEP∗ with the
corresponding cone of superoperators P (via the Choi isomorphism). This can be reformulated
as follows.

Proposition 3.41 (Entanglement witnesses). For H = Cm⊗Cn and ρ ∈ D(H) the following
conditions are equivalent:

1. state ρ is entangled,

2. there exists σ ∈ SEP∗(H) =BP such that 〈σ,ρ〉HS = Tr(σρ)< 0,

3. there exists a positivity preserving linear map Ψ : Msa
n →Msa

m such that Tr (C(Ψ)ρ)< 0.

Proof. It holds that: ρ is entangled ⇐⇒ ρ /∈ SEP⇐⇒

there exists σ ∈ SEP∗ := {σs : 〈σs,ρs〉HS ≥ 0, ∀ρs ∈ SEP} such that 〈σ,ρ〉HS < 0,

where the first equivalence is the definition of an entangled state and the second equivalence
is the definition of the dual cone. In order to prove 3., we represent σ as the Choi matrix of
some positive superoperator which comes from Choi’s isomorphism.

Corollary 3.42 (Horodecki’s entanglement witness theorem). Consider H = Cm⊗Cn . A state
ρ on H is entangled if and only if there exists a positivity preserving map Φ: Msa

m →Msa
n such that

the operator
�

Φ⊗ IdMsa
n

�

ρ is not positive semidefinite.

Proof. First we prove the sufficiency implication (¬=⇒¬). Since a separable stateρ is a convex
combination of product states by (2.9), it suffices to take ρ = τm ⊗τn ∈Mm⊗Mn and observe
that

�

Φ⊗ IdMsa
n

�

ρ = Φ(τm) ⊗ τn is positive (since Φ is positive). Conversely, for showing the
necessity implication (=⇒), we take the positivity preserving linear map Ψ : Msa

n → Msa
m from

Proposition 3.41. Then, for χ =
∑

i |ii〉 ∈ C
m⊗Cn we use the Choi matrix representation (3.4),

which implies

0 > Tr (C(Ψ)ρ) = 〈C(Ψ),ρ〉HS =
¬�

Ψ ⊗ IdMsa
n

�

(|χ〉〈χ|) , ρ
¶

HS

=
¬

|χ〉〈χ| ,
�

Ψ∗ ⊗ IdMsa
n

�

ρ
¶

HS
= 〈χ|

�

Ψ∗ ⊗ IdMsa
n

�

ρ |χ〉 .

This shows that
�

Ψ∗ ⊗ IdMsa
n

�

ρ is not positive semidefinite. On page 38 we showed that Ψ∗ is
positivity preserving if and only if Ψ is, therefore choosing Φ= Ψ∗ concludes the proof.

Using the above notation, we say that the positivity preserving map Φ in Corollary 3.42 (or
equivalently, σ or the linear functional 〈σ, · 〉HS in Proposition 3.41) is an entanglement witness
certifying entanglement of the state ρ.

The most fundamental entanglement witness in quantum information theory is the transpo-
sition T : Msa

n →Msa
n considered in Section 2.3, where we developed the the famous PPT crite-

rion (or Peres-Horodecki criterion, see Proposition 2.34) for certifying entanglement. Actually,
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the PPT criterion is the Horodecki’s entanglement witness theorem 3.42 applied to Γ = T⊗IdMsa
n
.

Indeed, by Definition 2.33, state ρ ∈ D(Cn⊗Cn) is a PPT state if it has positive partial transpose,
i.e., if ρΓ = Γ (ρ) =

�

T ⊗ IdMsa
n

�

ρ is positive semidefinite.
It is natural to restrict the set of entanglement witnesses to the ones in an affine hyperplane,

e.g., Trσ = 1 or TrΦ(I) = 1. This reduces the search of a witness to a convex compact set.
Moreover, by Krein-Milman theorem on page 7, it suffices to consider entanglement witnesses
σ or Φ that are extreme points (or belong to extreme rays of the respective cones). In the next
examples we will explore what additional properties can we assign to entanglement witnesses.

Example 3.43 (Unital witnesses suffice). Corollary 3.42 remains valid if we require that Φ is
unital. Indeed, if ρ and Φ are as in Corollary 3.42, then the map Φ̂(X ) := Φ(X ) + ε(Tr X ) I also
fulfils corollary’s conclusions for small enough ε > 0. Consequently, the map

Ψ(X ) := Φ̂(I)−1/2 Φ̂(X ) Φ̂(I)−1/2

is unital and satisfies the properties of Corollary 3.42.

Example 3.44 (Trace preserving witnesses suffice). In Corollary 3.42 we can achieve that Φ is
trace preserving, by extending its range to be Msa

m+n.
For A = Φ∗(I) and any ρ ∈ Msa

m it holds TrΦ(ρ) = 〈I ,Φ(ρ)〉HS = Tr(Aρ). We may assume
that A is positive definite and I − A is positive semidefinite. Then it is easy to verify that for
B = (I − A)1/2,

Φ̃: Msa
m −→ Msa

m+n

ρ 7→ BρB ⊕Φ(ρ)

is trace preserving. Indeed, Tr Φ̃(ρ) = Tr(ρ(I − A)) + TrΦ(ρ) = Trρ − Tr (ρΦ∗(I)) + TrΦ(ρ) =
Trρ. Moreover, Φ̃(ρ) is positive semidefinite if and only if Φ(ρ) is positive semidefinite, and
the same holds for any extensions Φ̃⊗ Id and Φ⊗ Id. This proves that Φ̃ preserves positivity and
detects entanglement of ρ in Corollary 3.42 if and only if Φ does.

Example 3.45 (Optimal entanglement witnesses). Consider the bipartite Hilbert space H =
Cm⊗Cn. For σ ∈BP, let

E(σ) = {ρ ∈ D(H): Tr(ρσ) = 〈σ,ρ〉HS < 0} ,

be the set of entangled states detected by the entanglement witness σ. We define σ to be
an optimal entanglement witness if E(σ) is maximal (i.e., if E(σ) ⊂ E(τ) for τ ∈ BP, then
E(σ) = E(τ)). From the S-lemma (a well-known fact from control theory and semi-definite
programming stated in Appendix) it follows that ifσ lies on an extreme ray of BP andσ /∈ PSD,
then σ is an optimal entanglement witness.

3.3.1 Construction of entanglement witnesses

In this subsection we explain how entanglement witnesses arise from positivity preserving maps
that are not completely positive. This will be done by explicitly constructing the identifications
in Proposition 3.41. Consider a positive map Ψ : Msa

n →Msa
m that is not completely positive, i.e.,

Ψ ∈ P \CP. Then, the Choi matrix C(Ψ) ∈ Bsa(Cm⊗Cn) is not positive semidefinite by Choi’s
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theorem 3.9. More precisely, in the language of cones (see (3.13) and Tables 3.1, 3.2), this
means

(i) C(Ψ) ∈ SEP∗ =BP and (ii) C(Ψ) /∈ PSD= PSD∗ .

In other words, in the language of the dual cones (2.6), the the first condition says

(I) 〈C(Ψ),ρ〉HS = Tr (C(Ψ)ρ)≥ 0 for any separable operator ρ ∈ SEP(Cm⊗Cn),

and consequently, together with the second condition we get:

(II) there exists an entangled positive semidefinite ρE ∈ PSD(Cm⊗Cn)\SEP(Cm⊗Cn) such
that 〈C(Ψ), ρE〉HS = Tr (C(Ψ)ρE)< 0.

Then Proposition 3.41 asserts that C(Ψ) is an entanglement witness, namely, C(Ψ) certifies the
entanglement present in ρE. This is equivalent to saying thatΨ∗ : Msa

m →Msa
n is an entanglement

witness since
�

Ψ∗ ⊗ IdMsa
n

�

ρE is not positive semidefinite by Corollary 3.42.
In Figure 3.1 we illustrate the above points (I) and (II): the hyperplane 〈C(Ψ), · 〉HS = 0 in

Bsa(Cm⊗Cn) separates the SEP(Cm⊗Cn) cone (which lies in the 〈C(Ψ), · 〉HS ≥ 0 halfplane)
from the entangled operator ρE . (which lies in the 〈C(Ψ), · 〉HS < 0 halfplane). As shown in
the figure, the optimal entanglement witness Ψ certifies entanglement of all operators in the
set E(C(Ψ)) = {ρ : 〈C(Ψ), ρ〉HS < 0}. Observe also that the set of E(C(Ψ ′)) is smaller for an
entanglement witness Ψ ′ which is not optimal (in the sense of Example 3.45).

BP(Cm⊗Cn)

SEP(Cm⊗Cn)•
ρE

Bsa(Cm⊗Cn)

x



||||||
PSD(Cm⊗Cn)

•
C(Ψ)

hyperplane
〈C(Ψ), · 〉HS = 0

hyperplane
〈C(Ψ ′), · 〉HS = 0

Figure 3.1. Linear functional 〈C(Ψ), · 〉HS of an optimal entanglement witness Ψ.
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Remark 3.46 (Construction of completely positive maps that are not entanglement breaking).
We describe another use of positivity preserving maps that are not completely positive. Namely,
the above entangled positive semidefinite ρE ∈ PSD can be represented as the Choi matrix of
some completely positive map CP 3 Θ : Msa

n → Msa
m , i.e., ρE = C(Θ). Then such Θ is not an

entanglement breaking map by Lemma 3.29.

Entanglement witnesses are linear by definition. They are extensively used in quantum
information theory and quantum physics. In [ASLB13] the authors experimentally implemented
a nonlinear entanglement witness (which fits closer to the SEP cone than linear witnesses); see
also modern work from Otfried Gühne and co-workers at Universität Siegen.

3.3.2 Examples of entanglement witnesses

In Subsection 3.3.1 we explained that having an entanglement witness is equivalent to having a
positivity preserving map that is not completely positive. Moreover, in Example 3.45 we showed
that C(Ψ) is an optimal entanglement witness if and only if Ψ belongs to an extreme ray in the
positive cone P (for this reason, C(Ψ) ∈ BP in Figure 3.1 is drawn as an extreme point). In
summary, we gave an explicit construction of the equivalences

Ψ ∈ P (Cn,Cm)\CP (Cn,Cm)

⇐⇒
C(Ψ) ∈BP (Cm⊗Cn) is an entanglement witness

⇐⇒
Ψ (|x〉〈x|) ∈ PSD (Cm) for all x ∈ Cn and C(Ψ) /∈ PSD (Cm⊗Cn) . (3.14)

Recall the Størmer-Woronowitz theorem 2.37, stating that SEP
�

C2⊗C2
�

= PPT
�

C2⊗C2
�

and SEP
�

C2⊗C3
�

= PPT
�

C2⊗C3
�

. This implies that the transposition entanglement witness
detects every entangled state on C2⊗C2 or C2⊗C3. Thus, in order to construct new entangle-
ment witnesses we need to consider the Hilbert spaces Cm⊗Cn with m, n≥ 3.

Example 3.47 (The Choi map). The first example of a positive map that is not completely
positive is due to Choi [Cho75b]. The Choi map ΦC : M3→M3 is defined as

ΦC









z00 z01 z02

z10 z11 z12

z20 z21 z22







=





z00 + z11 −z01 −z02

−z10 z11 + z22 −z12

−z20 −z21 z00 + z22



 .

Choi studied positive maps on real symmetric matrices whereas, as we noted in the historical
overview on page 29, the extensions of positive maps to Hermitian matrices became relevant
much later with the work of the Horodecki group. Choi identified linear maps Φ: SYMn→ SYMm

with biquadratic forms pΦ in n+m variables via the isomorphism

Φ ↔ pΦ(x,y) =



y
�

�Φ (|x〉〈x|)
�

�y
�

,

where x ∈ Rn and y ∈ Rm. Then Φ is positivity preserving if and only if the polynomial pΦ
is nonnegative on Rn ×Rm, and Φ is completely positive if and only if pΦ is a sum of squares
(SOS) of bilinear forms [Cho75a]. Nonnegative polynomials pΦ representing positive but not
completely positive maps Φ: SYM3 → SYM3 attain value zero in 7, 8, 9 or 10 points (this is a
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known fact from real algebraic geometry [Qua15]). In particular, pΦ representing the Choi map
has 7 zeros.

We will use the equivalences in (3.14) to show that the Choi map ΦC is positive but not
completely positive. First we verify that ΦC is positivity preserving by checking that ΦC (|x〉〈x|)
is positive semidefinite for all x= (x0, x1, x2) ∈ C3. It suffices to verify that the principal minors
of ΦC (|x〉〈x|) are nonnegative:

detΦC (|x〉〈x|) =

�

�

�

�

�

�

|x0|2 + |x1|2 −x0 x1 −x0 x2

−x1 x0 |x1|2 + |x2|2 −x1 x2

−x2 x0 −x2 x1 |x2|2 + |x0|2

�

�

�

�

�

�

= |x0|2|x1|4 + |x1|2|x2|4 + |x2|2|x0|4 − 3|x0|2|x1|2|x2|2.

The first 2× 2 principal minor is

�

�

�

�

|x0|2 + |x1|2 −x0 x1

−x1 x0 |x1|2 + |x2|2

�

�

�

�

= |x2|2|x0|2 + |x1|4 + |x1|2|x2|2 ≥ 0

(the other 2×2 principal minors are the same, up to a permutation of indices) and the 1×1 mi-
nors are clearly nonnegative. In order to show that detΦC (|x〉〈x|)≥ 0, we solve the equivalent
optimization problem

minimize: ab2 + bc2 + ca2 − 3abc

subject to: a, b, c ≥ 0

a+ b+ c = 1.

where we set a = |x0|2, b = |x1|2, c = |x2|2. Alternatively, deploy Wolfram Mathematica and
draw some contour plots like we show on Figure 3.2. We find that detΦC (|x〉〈x|) attains minimal
value 0 in 7 real points (1,1, 1), (−1,1, 1), (1,−1,1), (1,1,−1), (1,0, 0), (0,1, 0), (0, 0,1). This
configuration of 7 points is called the Choi set of zeros.

α= 1 α= 0.1 α= 0.01

Figure 3.2. Contour plots of y2
0 y4

1 + y2
1 y4

2 + y2
2 y4

0 − 3y2
0 y2

1 y2
2 = α.

Next we calculate the Choi matrix of the Choi map C(ΦC) and show that it is not positive
semidefinite. In Example 3.6 we calculated (for clarity purposes we write only the nonzero
entries),
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C(Φ) =





























1 · · · −1 · · · −1
· 1 · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
−1 · · · 1 · · · −1
· · · · · 1 · · ·
· · · · · · 1 · ·
· · · · · · · · ·
−1 · · · −1 · · · 1





























.

For C = (1,0, 0,0, 1,0, 0,0, 1) ∈ C3⊗C3 we get 〈C|C(ΦC) |C〉 = −3, which proves that C(ΦC) is
not positive semidefinite, thus ΦC is not completely positive.

Remark 3.48. The equality 〈C|C(ΦC) |C〉 = Tr (C(ΦC) |C〉〈C|) = 〈C(ΦC), |C〉〈C|〉HS < 0 shows
that C(ΦC) is an entanglement witness certifying entanglement in the pure state

ρ =

�

�

�

�

1
p

3
C

·

1
p

3
C

�

�

�

�

∈ D(C3⊗C3).

However, entanglement of C is already detected by the partial transposition. Indeed, in the
computational basis C = (1,0, 0,0, 1,0, 0,0, 1) = |00〉 + |11〉 + |22〉 ∈ C3⊗C3, thus ρ is the
maximally entangled state (2.12). Actually, by Lemma 2.36 the partial transposition detects
entanglement in every pure state. In Subsection 3.3.3 we will present an algorithm how the
Choi map can be used to certify entanglement also in the states which cannot be detected by
the partial transposition.

In 2013 (nearly 30 years after Choi), K.-C. Ha [Ha13] proved that the Choi map ΦC on the
Hermitian matrices Msa

3 is an extremal positive map (i.e., ΦC belongs to an extreme ray in the
cone P(C3,C3)), and thus it defines an optimal entanglement witness from Example 3.45.

Example 3.49 (Buckley-Šivic maps). In [BŠ20] we extend Choi’s approach from symmetric
matrices to Hermitian matrices and construct new families of positivity preserving maps which
are not completely positive. The basic idea is as follows. We identify positive maps Ψ : Msa

3 →
Msa

3 with biquadratic forms pΨ via the isomorphism

Ψ ↔ pΨ(x,y) =



y
�

�Ψ (|x〉〈x|)
�

�y
�

,

where x = (x0, x1, x2) ∈ C3 and y = (y0, y1, y2) ∈ C3. We find new families of nonnegative
polynomials pΨ , which (when restricted to R) have 8, 9 or 10 zeros. This ensures that the
corresponding positive maps Ψ : Msa

3 → Msa
3 are significantly different from the Choi map in

Example 3.47 and its generalizations found in the literature. Our examples of positive maps
are not completely positive maps and moreover, they belong to extreme rays in the cone of
positive maps P. Therefore, as explained in Subsection 3.3.1, the associated entanglement
witnesses are optimal.

Here we present the most symmetric example from [BŠ20], corresponding to pΨ with 10
zeros.
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Theorem 3.50. Superoperators Ψt : Msa
3 →Msa

3 of the form





z00 z01 z02

z10 z11 z12

z20 z21 z22









(t2 − 1)2z00 + z11 + t4z22 −(t4 − t2 + 1) z10 −(t4 − t2 + 1) z20

−(t4 − t2 + 1) z01 t4z00 + (t2 − 1)2z11 + z22 −(t4 − t2 + 1) z21

−(t4 − t2 + 1) z02 −(t4 − t2 + 1) z12 z00 + t4z11 + (t2 − 1)2z22





are positive for t ∈ R. Apart from t = ±1, these positive maps are not completely positive. Moreover,
Ψt define extreme rays in the convex cone of positive maps P(C3,C3).

Proof. We will use (3.14) to show that theΨt are positive but not completely positive (by repeat-
ing the steps in Example 3.47 of the Choi map). First we verify that Ψt are positivity preserving.
Matrix Ψt (|x〉〈x|) is positive semidefinite for all x = (x0, x1, x2) ∈ C3 if its principal minors are
nonnegative for all x. This is equivalent to showing that, for all x ∈ C3,

1. TrΨt (|x〉〈x|) = 2
�

1− t2 + t4
� �

|x0|2 + |x1|2 + |x2|2
�

≥ 0,

2. the sum of the principal 2× 2 minors =
�

1− t2 + t4
�2 �|x0|2 + |x1|2 + |x2|2

�2 ≥ 0,

3. detΨt (|x〉〈x|)≥ 0,

where detΨt (|x〉〈x|) =

(1− t2)2 ×
�

t4
�

|x0|6 + |x1|6 + |x2|6
�

+ (t8 − 2t2)
�

|x0|4|x1|2 + |x0|2|x2|4 + |x1|4|x2|2
�

+

(1− 2t6)
�

|x0|2|x1|4 + |x0|4|x2|2 + |x1|2|x2|4
�

− 3(1− 2t2 + t4 − 2t6 + t8)|x0|2|x1|2|x2|2
�

.

Polynomials in 1. and 2. are clearly nonnegative. And the determinant (considered as a real
polynomial in |x0|, |x1|, |x2|) is the generalized Robinson polynomial, which is known to be pos-
itive everywhere except at the 10 zeros

(1, 1,1), (1,1,−1), (1,−1,1), (−1,1, 1), (1, t, 0), (0, 1, t), (t, 0, 1), (1,−t, 0), (0, 1,−t), (−t, 0, 1).

Next we calculate the Choi matrix C(Ψt),




























(t2−1)2 · · · · · · · ·
· 1 · −1+t2−t4 · · · · ·
· · t4 · · · −1+t2−t4 · ·
· −1+t2−t4 · t4 · · · · ·
· · · · (t2−1)2 · · · ·
· · · · · 1 · −1+t2−t4 ·
· · −1+t2−t4 · · · 1 · ·
· · · · · −1+t2−t4 · t4 ·
· · · · · · · · (t2−1)2





























.
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For V = (0,0, 1,0, 0,0, 1,0, 0) = |02〉+ |20〉 ∈ C3⊗C3 we get 〈V|C(Ψt)|V〉 = −(t2 − 1)2, which
proves that C(Ψt) is not positive semidefinite for all t except ±1, thus Ψt is not completely
positive for t ∈ R\{±1}.

Finally, Ψt is an extremal map (i.e., Ψt ∈ P(C3,C3) is an extreme ray) since it is, up to a
positive factor, the only positive linear map for which pΨ has the prescribed set of zeros. For
computational purposes it is convenient to represented pΨ as a nonnegative polynomial in real
variables

1
2
(xk + xk) ,

1
2i
(xk − xk) ,

1
2
(yk + yk) ,

1
2i
(yk − yk) , for k = 0, 1,2.

Remark 3.51. For t = 0, the map Ψ0 is equal to the Choi map ΦC in Example 3.47.

Remark 3.52. For t = 1 or t = −1 the Choi matrix C(Ψt) is positive semidefinite. Thus, by
Choi’s theorem 3.9, the completely positive Ψ±1 has a Kraus decomposition. For Z = |x〉〈x| ∈M3

we compute

Ψ±1 (|x〉〈x|) =





|x1|2 + |x2|2 −x1 x0 −x2 x0

−x0 x1 |x0|2 + |x2|2 −x2 x1

−x0 x2 −x1 x2 |x0|2 + |x1|2





= |(x1,−x0, 0)〉〈(x1,−x0, 0)|+
|(−x2, 0, x0)〉〈(−x2, 0, x0)|+
|(0, x2,−x1)〉〈(0, x2,−x1)|

= A1 |x〉〈x|A∗1 + A2 |x〉〈x|A∗2 + A3 |x〉〈x|A∗3,

where

A1 =





0 1 0
−1 0 0
0 0 0



 , A2 =





0 0 −1
0 0 0
1 0 0



 , A3 =





0 0 0
0 0 1
0 −1 0



 .

This implies that, for all Z ∈M3,

Ψ±1 (Z) = A1ZA∗1 + A2ZA∗2 + A3ZA∗3

is a Kraus decomposition of Ψ±1. All operators A1, A2, A3 have rank 2, thus Ψ±1 is not entangle-
ment breaking by Lemma 3.29. Since Ψ±1 (I) = 2I ,

1
2
Ψ±1 :





z00 z01 z02

z10 z11 z12

z20 z21 z22



 7→
1
2





z11 + z22 −z10 −z20

−z01 z00 + z22 −z21

−z02 −z12 z00 + z11





is a unital entanglement witness considered in Example 3.43. Moreover, 1
2Ψ±1 is trace preserv-

ing by definition. In Definition 3.16 we called a completely positive, trace preserving and unital
map a bistochastic quantum channel.
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3.3.3 Semidefinite programming

Semidefinite programming is a class of conic programming (in the theory of convex optimiza-
tion) with respect to the PSD cone. In Appendix we overview the conic programming for the
fundamental cones in Example 2.12: the nonnegative orthant, the Lorentz cone and the PSD

cone.

Definition 3.53. Let Φ: Mm → Mn be a self-adjointness-preserving map. A semidefinite pro-
gram (SDP), associated with Φ and two fixed operators A ∈ Mm and B ∈ Mn, is the following
optimization problem:

minimize: Tr(AX )

subject to: Φ(X )− B � 0

X � 0

In the above SDP we optimize over the positive semidefinite matrices X ∈ PSD (the con-
straint � 0 denotes that the matrices on the left are positive semidefinite).

The aim of this subsection is to construct entanglement witnesses that can detect entangle-
ment in some PPT states, which are by definition states ρ for which ρΓ is positive semidefinite.
PPT states are exactly the states that the transposition (arguably the most famous, but not the
strongest entanglement witness) cannot detect. This follows from the PPT criterion 2.34, which
is the same as the Horodecki’s entanglement witness theorem 3.42 applied to the transposition
(as explained on page 53). By Lemma 2.36 we know that the partial transposition certifies
entanglement in all pure states.

Here is an example of a mixed entangled PPT state.

Example 3.54. It is straightforward to check that the following state ρ ∈ D
�

C3⊗C3
�

has
positive partial transpose,

ρ =
1

21





























2 · · · 2 · · · 2
· 1 · · · · · · ·
· · 4 · · · · · ·
· · · 4 · · · · ·
2 · · · 2 · · · 2
· · · · · 1 · · ·
· · · · · · 1 · ·
· · · · · · · 4 ·
2 · · · 2 · · · 2





























.

However, the Choi entanglement witness (i.e., the Choi map ΦC in Example 3.47) certifies
entanglement in ρ. Indeed, C(ΦC)ρ has an eigenvalue equal to − 2

7 , thus ρ is entangled by
Corollary 3.42. We can apply the same argument to certify entanglement in ρ, by using the
maps Ψt ∈ P \CP from Theorem 3.50 instead of the Choi map ΦC , since C(Ψt)ρ is not positive
semidefinite for any t ∈ R\{±1}.

The following example shows that, there is no reason to believe that the Choi map can detect
entanglement in any state.
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Example 3.55 (Unextendible product bases (UPB)). Consider vectors in C3⊗C3,

|v1〉 =
1
p

2
|0〉 ⊗ (|0〉 − |1〉) ,

|v2〉 =
1
p

2
|2〉 ⊗ (|1〉 − |2〉) ,

|v3〉 =
1
p

2
(|0〉 − |1〉)⊗ |2〉 ,

�

�v4

�

=
1
p

2
(|1〉 − |2〉)⊗ |0〉 ,

|v5〉 =
1
3
(|0〉+ |1〉+ |2〉)⊗ (|0〉+ |1〉+ |2〉) .

These vectors are called a UPB or tiles because they satisfy the two properties,

1.



vi

�

�v j

�

= 0 for all i 6= j, and

2. no product vector z ∈ C3⊗C3 exists such that 〈vi |z〉= 0 for 1≤ i ≤ 5.

Then the state

ρtiles =
1
4

�

I −
5
∑

i=1

|vi〉〈vi |

�

is entangled, which follows directly from the UPB properties. However, ρtiles is a PPT state and
moreover, it is not detectable by the Choi map ΦC . In order to check this we write ρtiles in the
computational basis. Observe that 9 |v5〉〈v5|= J , the 9× 9 matrix of ones. Then,

ρtiles =
1
8





























1 1 · · · · · · ·
1 1 · · · · · · ·
· · 1 · · 1 · · ·
· · · 1 · · 1 · ·
· · · · 2 · · · ·
· · 1 · · 1 · · ·
· · · 1 · · 1 · ·
· · · · · · · 1 1
· · · · · · · 1 1





























−
1
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J

remains unchanged under the partial transposition. Moreover, in Wolfram Mathematica we
can check that the matrix C(ΦC)ρtiles has eigenvalues

{0.4281,0.3069, 0.125,0.0148, 0,0, 0,0, 0}

and is thus positive semidefinite. Analogous calculation shows that neither the positive maps
Ψt from Theorem 3.50 are able to detect entanglement in ρtiles, since C(Ψt)ρtiles is positive
semidefinite for all t ∈ R. We are optimistic that other examples of positive maps in [BŠ20]
will prove to detect entanglement in ρtiles, however this is beyond the scope of this thesis.

In Subsection 3.3.1 we constructed entanglement witnesses from positive maps that are not
completely positive. Now we put additional assumptions on Ψ ∈ P \CP, so that it will detect
entanglement also in the states with positive partial transpose. For this purpose we revisit
Table 3.2 and Table 3.1 and their association via the Choi isomorphism Ψ 7→ C(Ψ).
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Assume that Ψ ∈ DEC (Cn,Cm)\CP (Cn,Cm). By the definition of decomposable maps on
page 51, this means that Ψ = Ψcp1

+ T ◦ Ψcp2
, where Ψcp1

,Ψcp2
are completely positive maps.

By Corollary 3.42 there exists a state ρ on Cm⊗Cn such that
�

Ψ ⊗ IdMsa
n

�

ρ is not positive
semidefinite. However, the entanglemnt of this ρ is already detected by the partial transpo-
sition Γ = T ⊗ IdMsa

n
. Indeed, this follows from the cone duality,

C(Ψ) ∈ co-PSD+PSD= PPT∗ := {τ: 〈τ,ρ〉HS ≥ 0,∀ρ ∈ PPT}.

Therefore, in order to obtain new entanglement witnesses, we need to consider

Ψ ∈ P (Cn,Cm)\DEC (Cn,Cm)

⇐⇒
C(Ψ) ∈BP (Cm⊗Cn)\ (co-PSD+PSD)

⇐⇒
Ψ (|x〉〈x|) ∈ PSD (Cm) for all x ∈ Cn and C(Ψ) /∈ PPT∗. (3.15)

The last equivalence follows from (3.13) and the duality co-PSD+PSD= PPT∗. In particular,

C(Ψ) /∈ PPT∗⇐⇒ there exists ρ ∈ PPT such that 〈C(Ψ),ρ〉HS < 0.

Such an entanglement witness C(Ψ) induces a linear functional 〈C(Ψ), · 〉HS. We summarize the
above considerations as an optimization problem.

Proposition 3.56. Let Ψ : Mn→Mm be a positivity preserving map that is not decomposable. The
solution of the semidefinite program

minimize: Tr (C(Ψ)ρ)

subject to: ρΓ � 0

ρ � 0

is an entangled PPT state on Cm⊗Cn.

This way we can use the positive and not completely positive maps in Example 3.47 and
Example 3.49 to produce new entangled states on C3⊗C3, which cannot be detected by the
partial transposition. Furthermore, as explained in Remark 3.46, from new entangled states in
D
�

C3⊗C3
�

we can construct new completely positive maps on Msa
3 that are not entanglement

breaking.
For further links between semidefinite programming and entanglement detection we refer

to [HNW17]. For various forms of semi-definite programming in quantum information theory
see [Wat18].
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Appendix A

Conic programming

A.1 Semidefinite programming

Semidefinite programming is a class of conic programming and conic programming is a class of
mathematical programming. Appendix A is an introduction to this hierarchy.

Definition A.1 (Mathematical programming). Mathematical programming is about solving op-
timization programs of the form

Opt= min
x∈Rn
{ f0(x): fi(x)≤ 0, i = 1, . . . , m},

where the objective f0 : Rn→ R and the constraints fi : Rn→ R are functions at least in C1(Rn).

Mathematical programming is a generalization of linear programming (LP), where the ob-
jective and constraints are linear functions. Linear program has an elegant formulation in the
matrix form.

Definition A.2 (Linear programming). Given c ∈ Rn, A ∈ Mm,n, b ∈ Rm, solve the following
optimization program:

Opt= min
x∈Rn
{〈c|x〉 : Ax ≤ b} .

The corresponding objective and constraints are then indeed linear functions,

• objective f0 = 〈c|x〉=
∑n

j=1 c j x j ,

• constraints fi = (Ax)i − bi =
∑n

j=1 ai j x j − bi , for i = 1 . . . , m.

Usually we assume m>> n, i.e., more constraints than variables.
Next we present an alternative way to introduce nonlinearity (in terms of extending the

linear programming). Note that in Definition A.2, ≥ denotes the standard coordinate-wise
vector inequality

a ≥ b⇔ a− b ≥ 0⇔ a− b ∈ Rm
+ ,

where Rm
+ is the positive orthant cone defined in Example 2.12. The concept of convex cones

(the fundamental geometrical objects of this thesis) gives rise to another "reasonable" definition
of vector inequality induced by a regular cone K ⊂ Rm,

a ≥K b⇔ a− b ≥K 0⇔ a− b ∈K.
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Then we can define a conic program as an extension of a linear program in the following way.

Definition A.3 (Conic program). A conic program on a regular cone K is the optimization
program

min
x
{〈c|x〉 : Ax ≤K b}=min

x
{〈c|x〉 : Ax − b ∈K}.

There are two main benefits of conic representation:

• it is easy to distinguish between the structure (given by the cone K) and the data c, A, b;

• independently of the data, we are optimizing a linear objective over a convex set (i.e.,
convexity of the cone is built into the problem).

The three families of cones, the positive orthants, the Lorentz cones and the PSD cones
of complex positive semidefinite matrices (defined in in Example 2.12), allow to represent an
extremely wide spectrum of convex optimization problems. Specifically,

1. nonnegative orthants Rm
+ give rise to linear programs (LP);

2. finite direct products of Lorentz cones give rise to conic quadratic programs (CQPs)

min
x
{cT x : ‖Ai x − bi‖2 ≤ cT

i x − di , i = 1, . . . , m},

where Ai , bi , ci , di are matrices and vectors of appropriate dimensions;

3. Direct products of semidefinite cones give rise to semidefinite programs (SDPs)

min
X
{〈C , X 〉HS : Φi(X )− Bi � 0, i = 1, . . . , m},

were we minimize over X ∈Msa
d1

for given Φi : Msa
d1
→Msa

d2
and C ∈Msa

d1
, Bi ∈Msa

d2
.

Here we view the PSD cones in the real vector space of Hermitian matrices Msa
d = Bsa(Cd).

We refer the interested reader to the survey on conic programming and its relation to convex
optimization [Nem07], and to the book on convex optimization [BV04].

The S-lemma

We present a well-known and useful fact from control theory and semidefinite programming.

Lemma A.4 (S-lemma, [AS17]: C.3). Let M , N be real symmetric matrices of size n × n. The
following two statements are equivalent:

1. {x ∈ Rn : 〈x |M |x〉 ≥ 0} ∪ {x ∈ Rn : 〈x |N |x〉 ≥ 0}= Rn,

2. there exists t ∈ [0, 1] such that the matrix (1− t)M + tN is positive semidefinite.

We use the following reformulation of the S-lemma (for M = F and N = −G).

Corollary A.5. Let F, G be real symmetric matrices of size n× n for which there exists a y ∈ Rn

such that 〈y|G|y〉> 0. Then the following two statements are equivalent:

1. if x ∈ Rn verifies 〈x |G|x〉 ≥ 0, then 〈x |F |x〉 ≥ 0,

2. there exists µ≥ 0 such that F −µG is positive semidefinite.
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